Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовый хромато-масс-спектрометр

Рис. 4,33. Вычислительная система со сдвоенными процессорами, лежащая в основе автоматизированного газового хромато-масс-спектрометра. Рис. 4,33. <a href="/info/24424">Вычислительная система</a> со сдвоенными процессорами, лежащая в <a href="/info/445777">основе автоматизированного</a> <a href="/info/140965">газового хромато-масс</a>-спектрометра.

    Интерфейсы для газовой хромато-масс-спектрометрии [c.600]

    Оба метода, соединенные в газовой хромато-масс-спектрометрии, т. е. газовая хроматография (ГХ) и масс-спектрометрия (МС), уже использовались отдельно в аналитической химии перед первым успешным их соединением, о котором сообщалось в 1952 г. [14.2-1]. Несмотря на то что и ГХ, и МС в то время находились на ранней стадии развития, для создания первого промышленно выпускаемого прибора для ГХ-МС потребовалось всего пять лет. [c.598]

    Технические характеристики портативных газовых хромато-масс-спектрометров [c.268]

    Всестороннее освещение различных способов ионизащ1и можно найти в разд. 9.4. Хотя допустимы различные способы ионизации, наиболее частыми для общего применения в газовой хромато-масс-спектрометрии являются электронный удар и химическая ионизация. Из этих двух способов ионизация электронным ударом является в настоящее время наиболее широко используемым способом ионизации (более 90% всего применения). Ниже обсуждаются причины этого. [c.601]

    Газовым хромато-масс-спектрометрам посвящено большое число работ см., например, [94—96, 57, 97]. Эти системы различаются между собой аппаратурным оснащением и способом соединения различных узлов. В статье [94] описана установка [c.124]

    Появление микрокомпьютера позволило значительно повысить интеллектуальность лабораторных приборов и установок за счет встраивания в них ЦП и памяти с хранящимися в ней программами. Действительно, аналитические приборы с микропроцессорами от автоматической пипетки до газового хромато-масс-спектрометра благодаря встроенным в них вычислительным системам стали более умными [67], более удобными в обращении, более надежными и часто более безопасными. Снижение стоимости миникомпьютеров и универсальных ЭВМ (и соответствующего периферийного оборудования) привело к тому, что, во-первых, во все большем числе лабораторий появились свои собственные миникомпьютеры, облегчающие административную и организаторскую деятельность, особенно в лабораториях с большим числом научных сотрудников и большим штатом технических работников во-вторых, с появлением в лабораториях запоминающих уст ройств стали возможными автоматический сбор большого объема эксперн ментальных данных (гл. 5), а также обработка и преобразование этих дан ных с помощью легкодоступных пакетов прикладных программ (гл. 9) Низкая стоимость электронной памяти позволила снабдить лаборатории та кимп облегчающими работу средствами, которые ранее были недоступны Например, в компьютерной системе можно хранить описания методик экс периментов и инструкций по технике безопасности, причем всю эту инфор мацню можно запросить (и быстро вывести в удобной для восприятия форме) с помощью подходящего терминального устройства. [c.200]


    Когда разрабатывали газовую хромато-масс-спектрометрию, ГХ-разделения проводили на набивных колонках со скоростями потока порядка 60 мл/мин и выше. Такая скорость потока несовместима с высоким вакуумом масс-спектрометрической системы. Решающим моментом коммерческого успеха гибридных ГХ-МС-систем было создание подходящего интерфейса, позволяющего преодолеть зто ограничение. Требования к интерфейсу состоят в следующем возможность снижения объемной скорости потока с ГХ-колонки до такого уровня, чтобы можно было поддерживать высокий вакуум масс-анализатора селективное отделение газа-носителя сохранение ненарушенными результатов хроматографического разделения. [c.600]

    Системы, объединяющие газовый хроматограф и масс-спектрометр, отличаются высокой эффективностью разделения и высокой способностью к идентификации, характерными для газовой хроматографии и масс-спектрометрии соответственно. Обычно для обеспечения синхронности работы этих двух приборов, для управления работой каждого из них и обработки большого числа сложных спектров, получаемых при каждом анализе, необходим компьютер. Более того, поскольку газовый хромато-масс-спектрометр способен выдавать сотни спектров в день, автоматизация анализа и интерпретации спектров на базе компьютера могла бы оказать существенную помощь. Типичная конструкция такой системы приведена на рис. 3.7. Прибор данного класса имеет очень сложное устройство и включает много различных интерфейсов. Некоторые из них более подробно будут рассмотрены в главе, посвященной принципам сопряжения. [c.123]

    На рис. 4.33 показано типичное применение конфигураций со сдвоенным процессором в аналитической установке —газовом хромато-масс-спектрометре. Один процессор управляет работой газового хроматографа и масс-спектрометра и, кроме того, собирает данные с каждого прибора, запоминая их в об>- [c.189]

    В разд. 9.4 были описаны масс-спектрометры различных типов. Ограничимся характеристикой особенностей, относящихся к газовой хромато-масс-спектрометрии, таких, как чувствительность, линейный динамический диапазон, разрешение, диапазон масс и скорость сканирования. Скорость сканирования масс-спектрометра—это время, необходимое для сканирования одного порядка на шкале масс (например, от т/г 50 до 500). В газовой хромато-масс-спектрометрии с капиллярными колонками благодаря небольшой ширине пика необходима высокая скорость сканирования (< 1 с/порядок), чтобы получить по крайней мере 3-5 спектров для пика в режиме полного сканирования. Ограниченный диапазон масс некоторых масс-анализаторов не является проблемой, поскольку молекулярная масса соединений, поддающихся газохроматографическому разделению, обычно меньше 600. Различные типы масс-спектрометров значительно различаются разрешающей способностью. Разрешение Д —мера способности масс-спектрометра разрешать два пика иона с различными т/г, она определяется как К = т/Ат. Способность масс-спектрометра разрешать два пика с различающимися на единицу массами называется единичным массовым разрешением. С едичичным массовым разрешением обычно работают квадрупольные приборы. Приборы же с двойной фокусировкой достигают высокого массового разрешения (Д > 10 ООО). Это важно, поскольку из точной массы иона фрагмента часто можно непосредственно получить элементный состав. Для разделения ионов С5Н11О2 и 4HllN20 (табл. 14.2-1) с Дт = 0,01123 требуется разрешение по крайней мере К = 9172. [c.603]

    В настоящее время доступны как газовые хромато-масс-спектрометры, так и жидкостные хроматографы со спектральным обнаружением хроматографируемых компонентов. Результатом многоканального обнаружения является регистрация трехмерных так называемых сиектро-хроматограмм . На рис. 5.37 показана такая спектро-хроматограмма в псевдоизомерной форме и в форме контурной диаграммы. Как и при представлении поверхностей отклика (рис. 5.2), контурные диаграммы предпочтительны в тех случаях, если требуется объективная интерпретация данных на основании рисунка. [c.300]


Смотреть страницы где упоминается термин Газовый хромато-масс-спектрометр: [c.125]    [c.126]    [c.221]   
Компьютеры в аналитической химии (1987) -- [ c.38 , c.123 , c.190 , c.221 , c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хромато-масс-спектрометрия

Газовая хромато-масс-спектрометрия масс-спектрометр

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия хромато-масс-спектрометрия

Хромато

Хромато-масс-спектрометрия

Хроматы



© 2025 chem21.info Реклама на сайте