Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы ионов в масс-спектрометрии

    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]


    Масс-спектрометрия высокого разрешения нашла широкое применение не только для идентификации и изучении структуры отдельных соединений, но и для идентификации типов соединений в сложных смесях и установления распределения этих типов по молекулярным весам. Использование масс-спектрометра при исследовании широких высокомолекулярных нефтяных фракций ограничивается рядом факторов, одним из которых является наложение масс-спектров типов, отличающихся по 2 (в формуле СпНзга+г) ИЗ 14 единиц. Это наложение обусловлено равенством номинальных масс 1С—12Н. Так, например, ион нонана С9Н20 (общая формула С Игп+г) и нафталина СюНа(СпН2п 12) обладают номинальной массой 128, в результате чего их молекулярные пики на приборе с малой разрешающей силой перекрываются. Однако точные значения массовых чисел подобных ионов отличны друг от друга ДМ дублета Н 2—равно 0,0939. Ввиду этого на масс-спектрометре с высоким разрешением указанным выше ионам будут соответствовать 2 пика, что позволит установить присутствие обоих веществ. Естественно, аналогичная картина наблюдается и в осколочных ионах. При переходе к неуглеводородным соединениям расшифровка осложняется из-за наложения масс-спектров, вследствие наличия одного или нескольких гетероатомов. В этом случае установление распределения по молекулярным массам с помощью обычного масс-спектрометра часто невозможно. [c.126]

    Функциональное назначение масс-анализатора (или просто анализатора) состоит в сортировке (в пространстве или во времени) поступающих с большой скоростью из ионного источника ионов в соответствии с величиной отношения массы к заряду miz, характерной для каждого иона, и направлении их к системе детектирования. Различают анализаторы статического и динамического типа. В статических анализаторах силовые поля, под действием которых происходит разделение ионов (магнитное поле или же комбинация магнитного и электрического полей), сохраняются стационарными в шкале времени пролета ионов. К этой группе относятся приборы с магнитными анализаторами секторного типа и масс-спектрометры с двойной [c.288]

    Таким образом, уже в самом начале развития метода определилось два направления измерение относительного количества ионов различных типов (на масс-спектрометрах) и точ- [c.6]


    Вторично-ионную масс-спектрометрию часто используют для изучения поверхности нанесенного конденсированного образца. Хотя в результате нагрева в этом случае может происходить разрушение образца, что приводит к уменьшению выхода вторичных ионов, метод имеет свои преимущества при решении именно подобных задач. Более удобным является растворение исследуемого образца в жидкой матрице типа глицерина, поскольку быстрая диффузия в жидкости обеспечивает постоянное восстановление поверхности. [c.32]

    Серийный тип [1717] масс-спектрометра с циклоидальной фокусировкой уже существует. При изготовлении этого масс-спектрометра удалось, несмотря на меньшие размеры, чем у приборов секторного типа, обеспечить достаточную разрешающую силу и чувствительность. Как показали Робинсон и Холл, в любом масс-спектрометре, в котором ионный пучок отклоняется магнитным полем, энергия иона пропорциональна квадрату радиуса кривизны его траектории. Таким образом, ионы в малогабаритном масс-спектрометре с магнитным отклонением обязательно обладают малыми энергиями, и поэтому колебания величины энергии в таком масс-спектрометре, вызванные, например, тепловым распределением, начинают играть более важную роль. По этой причине при уменьшении масштаба прибора особенно целесообразно иметь прибор с совер- [c.31]

    В магнитном время-пролетном масс-спектрометре ионы движутся в постоянном магнитном поле по круговой траектории. В этом спектрометре ионный пучок проходит импульсами с частотой 300 кгц [10]. Ускоряющее электрическое поле падает до нуля раньше, чем ионы (кроме самых легких) выйдут из источника, так что все тяжелые ионы получают равные импульсы, и поэтому в магнитном поле движутся по одной и той же траектории. Так как ионы описывают полную окружность, они фокусируются, давая ионно-оптическое изображение своего пространственного распределения в ионном источнике. Другой тип масс-спектрометра по времени пролета представляет собой прибор, в котором ионы двигаются от источника к коллектору по линейной траектории при отсутствии магнитного поля. В приборе измеряется время дрейфа ионов с известной энергией по длинной ограниченной трубке. Интервал времени между поступлением масс на коллектор [c.7]

    Среди серийно выпускаемого ПАПТТ в нашей стране можно отметить Оже-злектронный спектрометр модели 09ИОС-2 и вторичный ионный масс-спектрометр Полюс-4. Конструктивно Оже-электронный спектрометр состоит из аналитической вакуумной камеры с размещенным в ней анализатором энергий Оже-электронов, источниками электронов и ионов и манипулятором с образцом, а также предварительной камеры для смены и обработки образцов. Обе камеры имеют независимую откачку и позволяют получать предельный вакуум 10 и 10 Па. Вторичный ионный масс-спектрометр Полюс-4 предназначен для экспрессного послойного анализа химического состава твердого тела и определения профилей распределения примесей по глубине стравливаемого слоя с разрешением до 3-10 м. В Полюсе-4 применен монополярный масс-анализатор квадрупольного типа, благодаря использованию которого можно одновременно проводить сравнительный анализ образец-эталон в идентичных условиях. В спектрометре имеются два ионных газоразрядных источника типа Пеннинга, в которых в качестве рабочих газов используются Аг, Нг, О2. Аналитическая камера Полюса-4 откачивается механическим вакуумным насосом и ТМН. Рабочий вакуум составляет 10 " - 10 Па. [c.78]

    С одной стороны, магнитное поле оказывает фокусирующее действие на ионный пучок, с другой же стороны, оно способствует энергетической дисперсии ионов. Поскольку магнитное секторное поле позволяет осуществлять фокусировку ионного пучка единственным способом, приборы с анализатором секторного типа называют масс-спектрометрами с одной (ординарной) фокусировкой. Энергетическая дисперсия не позволяет [c.289]

    В табл. 2.1. рассмотрены наиболее широко используемые методы получения ионов из твердых образцов. В столбце АЯ грубо оценен разброс полученных ионов по энергиям, что определяется типом применяемого масс-спектрометра. Если разброс не превышает 10 эВ, то можно использовать спектрометр с ординарной фокусировкой (ОФ), фокусирующий только угловую составляющую ионов для большого разброса по энергиям требуется дополнительная фокусировка (спектрометр с двойной фокусировкой — ДФ). [c.20]

    К источникам ионов масс-спектрометров различных моделей подсоединяются специальные перчаточные боксы. Например, Джонсон и сотр. (1969) использовали на американском приборе СЕС-110 перчаточный бокс с принудительной тягой для анализа металлических образцов урана и плутония (этот тип бокса [c.355]

    Относительные значения ионных токов различных положительных ионов в известной степени зависят от типа применяемого масс-спектрометра и условий эксперимента. Масс-спектры ацетилена по данным ряда источников приведены ниже (табл. 11.93). В таблице указаны также относительные значения ионных токов для ионов с массой, превышающей массу ацетилена, получаемых при вторичных ионно-молекулярных реакциях в камере масс-спектрометра. [c.164]


    Используемые во времяпролетной спектроскопии детекторы делятся на два типа — регистрирующие изменение потока и изменение плотности частиц. К первым относятся, например, детекторы с поверхностной ионизацией, вторичные умножители, используемые для регистрации метастабильных частиц и т. п. К детекторам второго типа относятся ионизационные манометры, источники ионов масс-спектрометров и другие устройства, сигнал которых пропорционален плотности газа внутри рабочего объема. [c.183]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    Высоту пиков ионов с массовым числом, соответствующим молекулярному весу анализируемого соединения, — пик молекулярного иона, принимают за 100%. Высоты пиков других массовых чисел выражают в процентах от молекулярного. В табл. 50 приведены масс-спектры индивидуальных углеводородов, содержащих от 1 до 5 атомов углерода в молекуле, полученные на масс-спектрометре типа МС-1. [c.263]

    Прибор позволяет получать различные ионы и ио шзированные осколки и измерять их отиоситольное содержание и массы. Ионы и ионизированные осколки образуются при бомбардировке вещества — в нашем случае углеводородов — электронами в ионизационной камере масс-спектрометра. Эти ионы и ионизированные осколки образуются при прохождении электрона соответствующей энергии вблизи нейтральной молекулы. В зависимости от энергии электрона, которую получает молекула, могут наблюдаться различные эффекты молекула может потерять один или несколько своих электронов и таким образом образовать положительный ион молекула можот распасться на осколки, прячем некоторые из этих осколков теряют электроны я становятся положительными ионами. Реже может происходить захват электрона, приводящий к образованию отрицательного иона. В масс-спектрометрах стандартного типа отрицательные ионы обычно не измеряются относительно образования таких ионов из углеводородов и их поведения мы располагаем весьма ограниченными сведениями. [c.336]

    Таким образом, используя расширенный набор аналитических характеристик можно получить более подробные данные о структуре анализируемой смеси сераорганических соединений методом масс-спектрометрии. На основании распределения интенсивностей пиков молекулярных и осколочных ионов возможно определение степени замещения и распределения по длине цепи для каждого типа соединений в смеси. [c.208]

    Наряду с развитием приборостроения в области классической масс-спектрометрии , начиная с 1950 г., предложен ряд оригинальных методов разделения ионов и осуществлено создание большого числа типов приборов, относимых обычно к так называемым динамическим масс-спектрометрам. В динамическом масс-спектрометре с циклоидальной фокусировкой применяются скрещенные электрическое и магнитное поля. Развертка спектра осуществляется путем изменения величины одного из полей [7]. [c.7]

    Необходимое условие для получения ионных токов при взаимодействии электронов с молекулами органических веществ — наличие газовой фазы с достаточно высокой упругостью. В большинстве случаев это осуществляется в системе напуска масс-спектрометра, соединяющейся при помощи какого-либо натекателя с ионным источником. Созданию различных типов натекателей и собственно систем напуска посвящено большое число работ [39]. Мы остановимся лишь на основных требованиях к таким системам, которые должны обеспечить  [c.37]

    Усовершенствование системы введения образца в ионный источник масс-спектрометра, обеспечившее возможность работы при высоких температурах, повышение разрешающей способности и чувствительности прибора, позволили подойти к анализу сложных смесей органических соединений, в частности высокомолекулярных углеводородов нефтяных фракций. Масс-спектрометрическому анализу принципиально могут подвергаться любые продукты, содержащие различные типы углеводородов в широком диапазоне молекулярных весов. Однако целесообразно проводить исследование продуктов, разделенных на фракции, возможно более узкие в отношении распределения молекулярных весов и содержания различных типов углеводородов. [c.155]

    Вопросы интерпретации масс-спектров выходят за рамки настоящего руководства и подробно изложены в специальных монографиях [65, 66]. Кратко следует отметить, что в хромато-масс-спектрометрии в настоящее время основным приемом анализа полученной информации является масс-спектрометрическая идентификация, т. е. поиск в больших массивах данных масс-спектров, лучше всего совпадающих со спектрами определяемых соединений, осуществляемый с помощью ЭВМ. Существуют способы предварительной групповой идентификации, т. е. определения на первой стадии анализа масс-спектра гомологического ряда вещества [66] с последующим уточнением его структуры с учетом известных закономерностей фрагментации данного ряда. Однако в хромато-масс-спектрометрии особый интерес представляют методы совместного использования для идентификации как газохроматографических, так и масс-спектрометрических характеристик. Действительно, все типы параметров удерживания, обсуждаемые в разделе III.2.2, могут быть определены в ходе хромато-масс-спектрометрического анализа одновременно с регистрацией масс-спектров. Если в спектре неизвестного вещества регистрируется пик молекулярных ионов, то вычисление так называемых гомологических инкрементов индексов удерживания позволяет уточнять результаты групповой идентификации, что важно для соединений разных классов, обладающих практически одинаковыми закономерностями фрагментации [64]  [c.203]

    При определении потенциалов ионизации и появления на масс-спектрометре регистрируют изменение ионного тока в зависимости от энергии ионизирующих электронов. При этом получается так называемая кривая эффективности ионизации, по которой тем или иным методом определяют потенциал ионизации. Наиболее часто встречающийся тип кривой состоит из четырех основных частей  [c.175]

    Точная форма кривой в значительной степени зависит от природы иона. Для молекулярных и осколочных ионов, образующихся при простом механизме ионизации, начальный участок кривой меньше и угол линейного участка больше, чем для ионов, образующихся по сравнительно сложному механизму. Если сравнивать ионы одного типа, то различия в форме их ионизационных кривых невелики. Так ионизационные кривые для молекулярных ионов криптона, аргона, двуокиси углерода, метана, ацетилена, этилена, водорода и воды обычно располагаются параллельно, особенно в области низких энергий [130], если в масс-спектрометр они вводятся [c.175]

    Ионный ток Ij ионов типа /, регистрируемый детектором в масс-спектрометре  [c.269]

    По конструкции масс-спектрометры относятся к двум принципиально различным типам низкого и высокого разрешения. В данной книге рассматриваются возможности структурного анализа по масс-спектрам низкого разрешения. Приборы высокого разрешения измеряют массы ионов с точностью до 5—6 значащих цифр, что позволяет непосредственно определять их брутто-формулы. Так, например, на таких спектрометрах можно раздельно детектировать ионы состава [СгНа]" , [СНО и [ЫгН] , имеющие точные массы 29,0391, 29,0027 и 29,0140 а. е. м., тогда как на спектрометрах низкого разрешения все они проявляются одним пиком с массовым числом 29. [c.174]

    Прибор Гоудсмита может быть отнесен к особому типу трохоидального масс-спектрометра, в котором величина электрического поля Е равна нулю. Хиппл и Томас [929] предложили конструкцию, в которой поле линейно изменяется от значения Ед в начальный момент времени до значения —Ео за время Т. Они получили траекторию, по которой ион совершает 15 оборотов по пути от источника к коллектору. [c.34]

    А. D а 1 у N. R., Ионный детектор сцинтилляционного типа для масс-спектрометра Rev. S i. Ibstr., 31, 264 (1960). [c.681]

    Система хронато-масс-спектрометрии включала в себя следующие приборы хроматограф ЛХМ-7А колонка из нержавеющей стали длиной 6 м, внутренний диаметр —3 мм. Неподвижная жидкая аза полиэтиленгликоль — 20 тыс., нанесенный в количестве 7 % на целит-503. Скорость газа-носителя гелия —20мл/мин. Анализ проводили с программированием температуры от 100 да 200 "С со скоростью 2 градуса в минуту. Использовался молекулярный сепаратор на керамических фильтрах с коэффициентом обогащения 60. Масс-спектрометр типа 1306 был оборудован светолучевым осциллографом типа Н-117 и счетчиком ионов СИ-03, температура ионизационной камеры 250° 126]. [c.74]

    В последние годы — как и ранее — продолжают появляться работы, посвященные выявлению общих законом-ерностей фрагментации органических соединений под действием электронного удара с образованием положительных ионов [166, 167] и масс-спек-трам классов и типов соединений, встречающихся в нефтях. Впервые появилась монография, посвященная образованию и фрагментации отрицательно заряженных молекулярных ионов [168]. Можно рекомендовать и монографию [169], посвященную пиролитической масс-спектрометрии, которая успешно применяется к анализу неперегоняющихся органических составляющих нефти. Остается актуальной и книга [170], включающая статьи по молекулярной структуре нефти, анализу нефтяных фракций и масс-спектрам аренов. [c.131]

    При определении группового состава сложных смесей, представленных в нефтяных фракциях [171], аналитическими характеристиками служат суммарные интенсивности пиков определенных серий так называемых характеристических ионов. Определение неизвестных концентраций различных типов соединений осуществляется решением системы линейных уравнений, учитывающих взаимные наложения их масс-спектров. Калибровочные коэффициенты— элементы матрицы этой системы уравнений — определяются на основании анализа узких фракций модельных смесей, а также с помощью математических мQдeлeй, основанных на эмпирических корреляциях масс-спектров со структурой молекул. Анализ группового состава в конечном счете выводится из известных и все пополняемых масс-спектров индивидуальных соединений. Подробно эти принципы и методики количественного анализа с применением масс-спектрометрии рассмотрены в монографиях [166, 167]. [c.132]

    Имеется много примеров по гфименению хромато-масс-спектрометрии для анализа других суперэкотоксикантов. Так, N-нитрозамины определяют этим методом в количествах порядка нескольких пикофам-моБ 49,50 . В литературе приведены многочисленные методики определения остаточных количеств ХОП методом ГХ-МС в почве и биоте Основной проблемой анализа соединений типа ДДГ является их разложение или превращение при ионизации электронным ударом с регистрацией положительных ионов, причем превращения типа /]ДТ ДДЭ и ДДТ ДДД наблюдались как в масс-спектромефе, так и в хроматофа-фической колонке (511 Химическая ионизация позволяет исключить нежелательные явления. В качестве газа-реагента обычно используют изобутан [c.269]

    Аддитивность масс-спектров компо нентов смеси н прямая заппсимость между количеством вещества и интенсивностью ионных токов делают масс-спектрометр гибким и высокочувствительным аналитическим прибором в широких диапазонах концентраций. Так как интенсивность ионного тока связана только с числом молекул определенного сорта, то полученная информация характеризует молекулярный состав смеси, а не является усредненной , что присуще другим физическим методам. Возможность определения массы молекул позволяет детально описать данный тип молекул смеси. В результате этого масс-спектрометр в области установления группового состава смеси не имеет соперников среди других физических методов. [c.4]

    Первый масс-спектрометр был сконструирован Демпсте-ром Б 1920 г. [3]. В этом приборе применен источник ионов, разработанный Ниром, в котором положительные ионы возникали в результате бомбардировки молекул электронами. Этот тип источника обеспечивал образование ионов с примерно одинаковой небольшой кинетической энергией. Ускорение ионов происходило за счет большой разности потенциалов ионы проходили через щель. Таким образом, получался пучок, в котором все ионы обладали близкой по величине кинетической энергией. Пучок ионов отклонялся на 180° магнитным полем, расположенным перпендикулярно направлению движения ионов, и отклоненные ионы фокусировались на щель, через которую могли проходить только ионы с определенным отношением массы к заряду. Масс-спектрометры с таким разделением ионов относят к приборам статического типа (рис. 1). [c.6]

    Как правило, масс-спектрометр работает при непрерывной откачке и постоянном натекании газа в прибор. В качестве примера рассмотрим вакуумную систему масс-спектрометра МХ-1303 (рис. 11). Высокий вакуум создается диффузионными парортутными насосами типа ДРН-10 производительностью 7—10 л1сек. Остаточное давление, достигаемое этими насосами при использовании ловушек с жидким азотом, составляет около 2-10 мм рт. ст. Один диффузионный насос используется для откачки источника ионов и прилегающей к нему части камеры анализатора. Остальная часть камеры анализатора и приемник ионов откачиваются другим диффузионным насосом. Дифференциальная система откачки позволяет значительно повысить давление анализируемого газа в источнике ионов, не повышая давления в камере анализатора, что увеличивает чувствительность масс-спектрометра без ухудигения его разрешающей способности. [c.35]

    В масс-спектрометре МХ-1303 ввод образца в ионный источник обеспечивается системой, схема которой вместе с усовершенствованиями, внесенными в систему авторами, изображена на рис. 12. Эти изменения позволили вводить в баллон напуска вещества, выкипающие до 200° С, минуя шлюз. Система напуска, выполненная в виде отдельной стойки, имеет самостоятельную вакуумную систему, предназначенную для откачки баллона напуска и вакуумных коммуникаций перед анализом и для ввода анализируемой пробы в баллон напуска. Предварительное разрежение создается форвакуум-ным насосом типа ВН-461 производительностью 50 л1мин. Для создания высокого вакуума служит ртутный диффузионный насос типа ДРН-10. Давление в системе измеряется при помощи блока, датчики которого — термопарные манометрические лампы типа ЛТ-4М — установлены на форвакуумном насосе и баллоне. На высоковакуумной ловушке установлены датчики ионизационного манометра (лампы ЛМ-2), [c.40]

    Аналогичные выводы следуют и из работы Наталис [121] который показал, что при электронной бомбардировке этиле новых углеводородов типа К—СН = СН—К, где К и К — ме тильный, этильный, втор-пропильпый и трег-бутильный ради калы, отношение интенсивностей пиков молекулярнь(х ионов транс- и цыс-изомеров по мере увеличения радикала возрастает. Наблюдаемый эо[)фект связан с освобождением при ионизации цис-изомера с большим алкильным радикалом избыточной энергии, что способствует более быстрому распаду образующегося иона. Авторами на масс-спектрометре МХ-1304 было проведено исследование масс-спектров цис- и гранс-изомеров пентена-2. Оказалось, что при энергии электронов 70 эв кривые распределения обоих изомеров практически идентичны, но при 20 эв количество ионов, содержащих 5 атомов углерода для транс-пентена-2 примерно на 20% больше, чем для цис-пентена-2, что позволяет идентифицировать эти изомеры. [c.60]

    Большое влияние на стабильность распределения интенсивностей в масс-спектре оказывают адсорбционные эффекты. Изменение интенсивности пиков в процессе съемки может быть вызвано также разложением анализируемого вещества в баллоне напуска, на пути к источнику и на раскаленном катоде. Некоторые изменения распределения интенсивностей в масс-спектрах имеют место вследствие дискриминации, связанной с типом развертки масс-спектры, снятые при изменении ускоряющего напряжения, могут значительно отличаться от масс-спектров, полученных с помощью магнитной развертки, что затрудняет их сопоставление. Спектры одних и тех же соединений, снятые на 60-, 90- и 180-градусных масс-спектрометрах, отличаются друг от друга [60]. При этом распределение интенсивностей ионов в масс-спектрах, снятых на раз личных приборах, изменяется различно в зависимости от типа исследуемогй соединения. [c.132]

    Всегдяпгний вопрос в масс-спектрометрии ка каком оскозапии приписывается та или иная структура молекулярным и осколочным ионам В масс-спектрах химической ионизации соединений (1-3) регистрируются осколочные ионы типа (Г,Д) (см. схема 2), которые могут образоваться только из ионов (М-СНз) в результате ретро-диеновой реакции [17]. Следовательно, фрагменты (Г,Д) и (М-СНз) и протонированные МН имеют строение, указанное на схеме 2. [c.171]

    Метод масс-спектрометрии сснован на изучении органических ионов (осколочных ионов), образующихся под действием электронного удара пучка электронов с энергией в несколько десятков электронвольт. Результаты получаются в виде масс-спектров, в которых регистрируются типы получившихся осколочных ионов (характеристикой каждого из Ш1Х является отношение массы к заряду т е) и интенсивность каждой масс-спектральной линии, отражающая число образовавшихся ионов данного типа. С помощью масс-спектрометрии легко определить и молекулярные массы органического вещества. Уже небольшие изменения строения отражаются в масс-спектрах, как это видно из сравнения масс-спектров бутана и изобутана (рис. 33). [c.361]

    Масс-спектрометрия производных гомоадамантана проведена кафедрой совместно с группой сотрудников Института органической химии АН СССР (Москва). В результате этого исследования было установлено, что производные гомоадамантана по их поведению под электронным ударом можно разделить на две группы. К первой группе относятся соединения с электроноакцепторными заместителями. Для этой группы характерно отщепление заместителя от молекулярного иона и образование углеводородного фрагмента. При этом 3-производные гомоадамантана претерпевают термическую перегруппировку типа перегруппировки Вагнера-Мейервейна, превращаясь в производные адамантана, а после отщепления боковой цепи—в адамантил-1-ка- [c.158]

    В отличие от инфракрасной или ультрафиолетовой спектроскопии — методов, не вызывающих разрушения образца,— масс-спектрометрия является методом, приводящим к деструкции образца. Масс-спектр показывает степень деструкции молекул вещества под действием электронного удара. Когда электронный пучок низкой энергии (около 10 эВ) ударяет молекулу вещества, находящегося в масс-спектрометре в парообразном состоянии, эта молекула обычно теряет один электрон и образует молекулярный ион. Если же молекула испытывает удар электронного пучка высокой энергии (около 70 эВ), то первоначально образовавшийся молекулярный ион распадается на более мелкие фрагменты. Одни из этих фрагментов будут заряжены, а другие — нет. Масс-спектры позволяют изучать лишь заряженные фрагменты. Вследствие низкого давления в масс-спектрометре (около 10 мм рт. ст.) за ударом молекулы пучком электронов высокой энергии могут последовать лишь в/лу/тгрммолекулярные реакции. Некоторые типы процессов, которые могут происходить после удара, схематически представлены ниже. Масс-спектрометр показан на рис. 28-13. [c.522]


Смотреть страницы где упоминается термин Типы ионов в масс-спектрометрии: [c.605]    [c.213]    [c.337]    [c.116]    [c.32]    [c.41]    [c.753]    [c.188]   
Смотреть главы в:

Основы масс-спектрометрии органических соединений -> Типы ионов в масс-спектрометрии




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Рабочие процессы и погрешности ионных источников масс-спектрометра статического типа



© 2025 chem21.info Реклама на сайте