Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия точная молекулярная масса

    Масс-спектрометрия высокого разрешения нашла широкое применение не только для идентификации и изучении структуры отдельных соединений, но и для идентификации типов соединений в сложных смесях и установления распределения этих типов по молекулярным весам. Использование масс-спектрометра при исследовании широких высокомолекулярных нефтяных фракций ограничивается рядом факторов, одним из которых является наложение масс-спектров типов, отличающихся по 2 (в формуле СпНзга+г) ИЗ 14 единиц. Это наложение обусловлено равенством номинальных масс 1С—12Н. Так, например, ион нонана С9Н20 (общая формула С Игп+г) и нафталина СюНа(СпН2п 12) обладают номинальной массой 128, в результате чего их молекулярные пики на приборе с малой разрешающей силой перекрываются. Однако точные значения массовых чисел подобных ионов отличны друг от друга ДМ дублета Н 2—равно 0,0939. Ввиду этого на масс-спектрометре с высоким разрешением указанным выше ионам будут соответствовать 2 пика, что позволит установить присутствие обоих веществ. Естественно, аналогичная картина наблюдается и в осколочных ионах. При переходе к неуглеводородным соединениям расшифровка осложняется из-за наложения масс-спектров, вследствие наличия одного или нескольких гетероатомов. В этом случае установление распределения по молекулярным массам с помощью обычного масс-спектрометра часто невозможно. [c.126]


    Молекулярную формулу можно получить из масс-спектра несколькими путями. С помощью спектрометра высокого разрешения, измеряющего mie с точностью до четырех знаков после запятой, можно найти точную молекулярную массу и, пользуясь соответствующими таблицами, определить молекулярную формулу вещества. Например, массовые числа для Na и G2H4 одинаковы (28,0), однако в первом случае точная масса составляет 28,0061, а во втором —28,0313. Эти величины легко различить с помощью масс-спектрометрии высокого разрешения. [c.524]

    Качественный анализ и идентиф икация органических соединений с помощью масс-спектрометра высокого разрешения с двойной фокусировкой основаны на точном определении разности масс ионов в сочетании с известными дефектами масс изотопов атомов в исследуемых веществах. Этот метод, впервые предложенный Бейноном [214—216] для качественного анализа соединений относительно низкого молекулярного веса (меньше 250), представляет собой спектроскопию дефектов масс и при выводе структурной формулы учитывает соотношение интенсивностей пиков ионов, входящих в состав мультиплетов, обладаюишх одинаковой номинальной массой. [c.125]

    Метод измерения масс с использованием масс-спектрометра с простой фокусировкой в основном аналогичен методу Нира масса неизвестного иона сравнивается с массой иона известного состава путем изменения ускоряющего напряжения при постоянном магнитном поле измеряются два напряжения, при которых появляются соответствующие пики. Однако в приборах с простой фокусировкой наиболее точные измерения должны быть ограничены молекулярными ионами, которые образуются в ионизационной камере без значительной кинетической энергии. Поскольку в масс-спектрометрах секторного типа нет фокусировки по скоростям, то ионы с начальной кинетической энергией, входящие в анализатор, будут двигаться по кривой большего радиуса, чем такие же ионы, но не обладающие кинетической энергией, и, следовательно, первые будут регистрироваться, как имеющие большую массу. [c.55]

    Использование масс-спектрометрического метода определения молекулярной формулы основывается на возможности написания точной формулы в противоположность соответствующим химическим методам элементарного анализа масс-спектрометр дает молекулярную, а не эмпирическую формулу. Кроме того, масс-спектрометрический метод обладает тем преимуществом, что возможно провести исследование любого типа молекул, независимо от наличия примесей. Действительно, при исследовании смесей при помощи масс-спектрометра можно определить молекулярную формулу более чем одного компонента. Вместе с тем нельзя утверждать, что масс-спектрометрический метод во всех случаях обладает преимуществами по сравнению с другими. К. исследованию различных веществ необходимо привлекать соответствующие методы, и для решения каждой проблемы использовать сочетание различных методов. Например, для масс-спектрометрии часто бывают полезны данные элементарного анализа, облегчающие конечный выбор правильной формулы из нескольких даже в тех случаях, когда исследованию подвергаются смеси. Наряду с элементарным анализом могут быть использованы другие методы. Так, например, присутствие карбоксильной группы можно легко установить по инфракрасным спектрам поглощения неизвестного соединения и исключить все формулы, содержащие меньше двух атомов кислорода. [c.318]


    Часто на начальной стадии подготовки образца к анализу к исследуемым неизвестным соединениям в качестве внутренних стандартов добавляют вещества, дающие фрагменты с точно установленной массой и составом. При этом преследуются две цели во-первых, заполнить большие пробелы между пиками, которые могут возникать в спектре исследуемого соединения, чтобы облегчить правильный отсчет масс во-вторых, сопоставить положения близких пиков в масс -спектрометрии высокого разрешения, что позволяет определять точные значения масс и молекулярные формулы, соответствующие отдельным пикам. [c.139]

    Измерения масс на приборах с простой и двойной фокусировкой всегда проводятся при возможно более высоких напряжениях, чтобы уменьшить влияние рассеянных потенциалов и образование осколочных ионов с начальной кинетической энергией (особенно на приборах с простой фокусировкой). Хотя осколочные ионы могут иногда образовываться с кинетической энергией в несколько вольт [177], иногда оказывается возможным проводить измерения их масс на масс-спектрометре с простой фокусировкой. При помощи этого прибора можно сделать выбор между двумя возможными структурами ионов в области низких масс для таких определений высокая точность не требуется. Так, при ускоряющем напряжении около 2000 в можно легко отличить осколочный ион ОН " от NH . Поскольку фокусировка по энергиям даже в приборах с двойной фокусировкой несовершенна, возможны небольшие ошибки вследствие наличия кинетической энергии у образующихся ионов, и наиболее точные измерения проводятся на молекулярных ионах. Даже при точности, требуемой в химических исследованиях, положение фокуса энергий следует регулярно контролировать путем измерения относительного влияния небольшого изменения ускоряющего напряжения на положение пучка по отношению к перемещению, вызываемому электростатическим анализатором. [c.56]

    Б. После идентификации пика М" и определения целочисленного значения молекулярной массы соединения желательно установить его элементный состав. Лучше всего для этой цели воспользоваться масс-спектрометром высокого разрешения и определить точную массу молекулярного иона. Например, измеренная этим способом молекулярная масса неизвестного соединения составляет 139,0744. Из различных комбинаций атомов, образующих молекулу с целочисленной массой 139, ближе всего к этой точной массе лежит комбинация СвНдКзО (расчетная масса составляет 139,0745). Ошибка между определенной и расчетной массами составляет 0,0001. Эту ошибку выражают в частях на миллион, т.е. в миллионных долях (м.д.). В этом примере различие между определенной и расчетной массами составляет 0,0001 а.е.м., т.е. одна часть на 1390745, что в пересчете на 1 млн составляет -0,7, т.е. эта разница равна 0,7 м.д. Обычно ошибка 10 м.д. вполне приемлема для определения состава. Однако чем меньше эта ошибка, тем больше вероятность определить точную молекулярную формулу соединения. [c.203]

    В биохимии, как и в физической химии, масс-спектрометрия применяется в основном для определения структуры молекул и, следовательно, идентификации веществ, т. е. для качественного анализа относительно сложных органических молекул. Зная точный молекулярный вес органической молекулы, можно определить ее элементарный состав, имея таблицы точных масс атомов. Таким образом, структура простых молекулярных ионов может быть определена просто из его массы, а структура более сложных органических молекул, таких, как стероиды, убихиноны, триглицериды,— из анализа их осколочных ионов. [c.181]

    В масс-спектрометре органическое соединение (или их смесь) переводится в газообразное состояние, затем подвергается действию электронного (фотонного) удара или сильного электриче-ческого поля, в результате чего удаляется электрон с одной из молекулярных орбиталей и образуется положительно заряженный молекулярный ион. Обладая избыточной энергией, полученной, например, от ударяющего электрона (имеющего, как правило, энергию 50—100.эВ), этот нон распадается на заряженные и нейтральные осколки, первые из которых далее в магнитном (или ином) анализаторе делятся в зависимости от их массы (точнее, в зависимости от отношения массы частицы к ее заряду, последний обычно равен единице) и далее регистрируются. Массовое число, соответствующее исходному (молекулярному) иону и осколочным ионам, является точной и однозначной характеристикой исходной молекулы и ее фрагментов. Образование набора тех или иных осколочных ионов с данной распространенностью (концентрацией) однозначно характеризует структуру исходной молекулы, так что даже очень близкие по структуре соединения (например, изомерные углеводороды) дают свои неповторимые масс-спектры. [c.131]

    Точная форма кривой в значительной степени зависит от природы иона. Для молекулярных и осколочных ионов, образующихся при простом механизме ионизации, начальный участок кривой меньше и угол линейного участка больше, чем для ионов, образующихся по сравнительно сложному механизму. Если сравнивать ионы одного типа, то различия в форме их ионизационных кривых невелики. Так ионизационные кривые для молекулярных ионов криптона, аргона, двуокиси углерода, метана, ацетилена, этилена, водорода и воды обычно располагаются параллельно, особенно в области низких энергий [130], если в масс-спектрометр они вводятся [c.175]


    Двумя ОСНОВНЫМИ приложениями масс-спектрометрии являются а) определение ТОЧНОЙ молекулярной массы и молекулярной формулы и б) исследование строения. Первое из этих приложений зависит от идентификации [c.523]

    Соединения с молекулярной массой менее 500 были выделены из полихлоридных смол, употребляемых для упаковки пи щевых продуктов, путем экстракции эфиром с последующим фракционированием на сефадексе Предварительный анализ производился с помощью ГХ набивные колонки НФ с 3 % 0V 1 и 3 % Дексил 300, температура соответственно 130—300 и 150—400°С (8°С/мин) Идентификация проводилась с по мощью ГХ—МС, при этом газовый хроматограф Карло Эрба 4160 (колонка 20 м X 0,3 мм с 0V 101, температура 75 °С в течение 2 мин и нагревание до 240 °С со скоростью 5 °С/мин) непосредственно соединялся с масс спектрометром VG 70 70, работающим при температуре источника 200 °С, разрешении 1000, энергии электронов 70 эВ, скорости сканирования масс-спектров от 500 до 25 а е м 0,7 с/декада Измерение точных масс ионов производили с помощью внутреннего стандарта 2I4 при разрешении 2000 и скорости сканирования 1,5 с/де када Результаты анализа экстрактов до и после гидрогенизации показали присутствие олигомеров винилхлорида от тримера до гексамера (возможно, до октамера) Каждый олигомер представлен рядом структурных изомеров, содержащих циклы или двойные связи Другие индентифицированные компоненты вклю чают смесь фталатов, алканов нонилфенолов, а также ундека ноат (образуется из инициатора лаурилпероксида [325]) [c.138]

    Для этой цели применяют молекулярные сепараторы различных конструкций. Наибольшее распространение получили струйные сепараторы, устройство которых показано на рис. 3.4. Принцип их действия основан на различной диффузии легких молекул газа-носителя, используемого в газовой хроматографии, и молекул органического вещества, выходящих со сверхзвуковой скоростью из форсунки сепаратора в вакуумную область. В одностадийном струйном молекулярном сепараторе имеются две форсунки с отверстием небольшого диаметра, которые установлены точно навстречу друг к другу на расстоянии 1 мм. Газовый поток из хроматографа через форсунку 1 подается в вакуумную камеру 2 (давление 10 торр), где молекулы распространяются со скоростями, обратно пропорциональными их массе. В результате более легкие молекулы газа-носителя (обычно гелий) откачиваются насосом, а более инерционные молекулы органического вещества попадают в отверстие форсунки 3, а затем в ионный источник масс-спектрометра. [c.42]

    Второй метод определения элементарного состава соединения основан на весьма точном определении массы молекулярного иона. Использование для этой цели масс-спектрометров с двойной фокусировкой представляет собой исключительно важное достижение [7]. [c.12]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Этот метод точного определения молекулярного веса не может быть распространен на осколочные ионы, по крайней мере при работе с обычными масс-спектрометрами, поскольку подобные вторичные [c.13]

    Применение масс-спектрометрии высокого разрешения при анализе фракций нефти и нефтепродуктов обусловлено присутствием в них соединений, имеющих приближенно одинаковую молекулярную массу (например, нонан и нафталин— 128 а. е. м.), но разные брутто-формулы С9Н20 (точное значение 128, 1975) и СюНз (точное значение 128, 1036). Так, при анализе ароматических и полярных фракций нефти встречаются следующие изобарные пары [186]  [c.134]

    Общая молекулярная формула (или брутто-формула фрагмента) может быть часто получена только путем достаточно точных измерений массы молекулярного иона (масс-спектрометрия высокого разрешения). Это возможно благодаря тому, что атомные массы не являются целочисленными величинами [c.32]

    В разд. 9.4 были описаны масс-спектрометры различных типов. Ограничимся характеристикой особенностей, относящихся к газовой хромато-масс-спектрометрии, таких, как чувствительность, линейный динамический диапазон, разрешение, диапазон масс и скорость сканирования. Скорость сканирования масс-спектрометра—это время, необходимое для сканирования одного порядка на шкале масс (например, от т/г 50 до 500). В газовой хромато-масс-спектрометрии с капиллярными колонками благодаря небольшой ширине пика необходима высокая скорость сканирования (< 1 с/порядок), чтобы получить по крайней мере 3-5 спектров для пика в режиме полного сканирования. Ограниченный диапазон масс некоторых масс-анализаторов не является проблемой, поскольку молекулярная масса соединений, поддающихся газохроматографическому разделению, обычно меньше 600. Различные типы масс-спектрометров значительно различаются разрешающей способностью. Разрешение Д —мера способности масс-спектрометра разрешать два пика иона с различными т/г, она определяется как К = т/Ат. Способность масс-спектрометра разрешать два пика с различающимися на единицу массами называется единичным массовым разрешением. С едичичным массовым разрешением обычно работают квадрупольные приборы. Приборы же с двойной фокусировкой достигают высокого массового разрешения (Д > 10 ООО). Это важно, поскольку из точной массы иона фрагмента часто можно непосредственно получить элементный состав. Для разделения ионов С5Н11О2 и 4HllN20 (табл. 14.2-1) с Дт = 0,01123 требуется разрешение по крайней мере К = 9172. [c.603]

    Масс-спектрометр испольэуют для определения относительной молекулярной массы Мг соединения, которую выражают в атомных единицах массы (а.е.м.) или дальтонах. В масс-спектрометрии существует три различных понятия массы. Средняя молекулярная масса вычисляется на основании элементного состава и средних атомных масс (табл. 9.4-1). Средняя молекулярная масса важна в масс-спектрометрии только в единственном случае —при изучении больших молекул (см. разд. 9.4.4). Номинальная молекулярная масса М, вычисляется с учетом элементного состава и номинальных атомных масс наиболее распространенных в природе изотопов. Точная молекулярная масса вычисляется из значений точных масс наиболее распространенных изотопов (см. табл. 9.4-1). Точные значения атомных масс определены по отношению к массе изотопа С, равной 12,0000. [c.256]

    В одном из известных методов определения молекулярного веса с помощью масс-спектрометра с одной фокусировкой магнитное поле прибора поддерживают постоянным, а соответствующие ионные пучки фокусируют, изменяя потенциал отталкивающей пластины. В идеальном случае масса иона, сфокусированного на коллекторе, обратно пропорциональна ускоряющему ионы потенциалу, т. е. Мп е) [а 1Уг , где Мп — масса иона единичного электронного заряда, аУп — ускоряющий ионы потенциал. В соответствии с этим = VЕсли величины ускоряющих" потенциалов 1 и Уг могут быть точно измерены, а величина М1 точно известна, то М2 удается определить с большой точностью. Однако на практике при использовании обычных масс-спектрометров с одной фокусировкой проблема, как правило, значительно усложняется, в основном вследствие существования других потенциалов в ионном источнике, необходимых для фокусирования ионного пучка и формирования ионов в трубку. В общем указанные потенциалы не претерпевают равномерных изменений при варьировании ионизационного потенциала, поэтому описанные выше простые измерения становятся недостаточно точными. Эту трудность удается преодолеть путем выведения всех небольших градиентов потенциала из ионного источника, как это делается при точных измерениях ионизационного потенциала [102]. Однако это сопряжено с понижением чувствительности прибора, так что исследуемый ионный пучок удается обнаружить лишь с трудом. Кроме того, для многих соединений высокого молекулярного веса напряжения, ускоряющие ионы, должны быть по возможности малыми. В некоторых случаях также понижается чувствительность секторных приборов при низких ускоряющих потенциалах, что в сочетании с указанным выше эффектом часто мешает использованию рассматриваемого метода. [c.12]

    Определите молекулярную формулу исследуемого вещества. Это можно сделать с помощью масс-спектрометрии высокого разрешения путем точного определения массы молекулярного иона (разд. 5.3.3), изучения относительных интенсивностей в кластере пиков молекулярного иона (разд. 5.3.4.), использования результатов элементного анализа или спектроскопии ЯМР (в частности, определения числа протонов) и т. д. Иноща здесь могут шшочь следующие два простых правила  [c.225]

    Более важным преимуществом масс-спектрометрии высокого разрешения является то обстоятельство, что значения масс иопов, полученные с точностью до третьего-четвертого знака после запятой, как правило, однозначно определяют их состав или допус-скают очень небольшое число вариантов [21]. Так, например, молекулярной массе алкалоида эборнаменина 308 может соответствовать более двухсот различных комбинаций атомов. С другой стороны, точному значению молекулярной массы этого соединения 308,188 + 0,001, найденному с помощью масс-спектрометрии высокого разрешения, соответствует только одна брутто-формула joHaiNaO [22]. Данные масс-спектрометрии высокого разрешения для сложных молекул представляются в виде так называемых элементных таблиц [22], в которых перечисляются ближайшие к найденным целые значения и/е, комбинации атомов, возможные для наблюдаемых точных значений, т/е и относительная интенсивность соответствующих пиков. Кроме того, в таблице указывают также расхождения между наблюдаемым и вычисленным для данной брут-то-формулы значением т/е. [c.178]

    Эмпирические закономерности, связывающие определенные молекулярные структур(.1 с масс-спектрами, служат основой для расшифровки строения молекул, идентификации органических веществ, качественного и количественного анализа их смесей. При использовании масс-спектрометров с больпю разрешающей способностью (10 000—20 000) анализ смесей углеводородов облегчается, так как имеет место разрешение дублетов (например СО и точные значения масс для расчета дублетов даны на стр. 522—525. [c.521]

    Следует отметить, что масс-спектр н-пропилфенилового эфира довольно похож на спектр фенилацетата, в котором основным также является пик иона miz 94, образованного при выбросе кетена из М . Чтобы различить эти два соединения, лучше всего использовать масс-спектрометрию высокого разрешения, так как уже точная масса молекулярного иона позволит различить брутто-формулы пропилфенилового эфира С9Н12О и фенилацетата gHg02. В отсутствие прибора высокого разрешения можно воспользоваться сравнением масс-спектров, поскольку количественные различия, в частности различия в интенсивности пика с miz 43, в масс-спектрах этих соединений должны быть. [c.220]

    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]

    Молекулярный пнк (parent peak) представляет собой пнк с наибольшим массовым числом, так как бимолекулярные реакции, которые могут приводить к увеличению молекулы [согласно уравнению (А.48)], происходят очень редко в условиях высокого разрежения в масс-спектрометре. Молекулярный пнк соответствует вместе с тем массе молекулярного иона и указывает точную моле кулярную массу исследуемого вещества . Для отличня молекулярных пиков от фрагмептных служит, кроме того, тот факт, что органические соединения, содержащие элементы С, Н, N, О, S и галогены, всегда имеют четное массовое число (исключение составляют вещества с нечетным числом ато.мов азота в молекуле). Объясните эту закономерность  [c.148]

    В последнее время масс-спектрометрия приобрела значение и при определении элементного состава продуктов органического синтеза с использованием точного определения массы при помощи двухсекторных приборов высокого разрешения. И в этом случае наиболее распространен вариант ионизации электронным ударом. В некоторых случаях для обеспечения значимого сигнала молекулярного иона требуются электроны с низкой энергией (10-20 эВ в отличие от обычного значения 70 эВ). Точное определение массы производят при помощи методики совпадения пиков. Определяемое соединение вводят в образец одновременно с подходящим веществом сравнения, например перфторке- [c.300]

    Одним из чрезвычайно интересных новых областей приложения масс-спектрометрии, которые активно изучается в настоящее время, является биохимия, или, точнее, определение параметров белков. Это является результатом внедрения таких методов, как MALDI и ионизации электрораспылением, которые обеспечивают экспрессное и точное определение средних молекулярных масс белков при малом количестве материала (на уровне пикомолей или ниже). Определяют среднюю молекулярную массу белка, так как для разделения различных изотопных пиков потребовалось бы спектральное разрешение по массе свыше 10000. В сравнении с другими, более традиционными биохимическими методами для определения молекулярной массы биологических макромолекул, такими, как SDS-PAGE и гель-проникающей хроматографии, масс-спектрометрия обеспечивает быстрое и легкое измерение, требующее малых количеств материала и обеспечивающее непревзойденную точность. Однако масс-спектрометрия является деструктивным методом, и использованный образец нельзя восстановить для последующих экспериментов. [c.307]

    Масс-спектрометрия позволяет определять молекулярную массу органических соединений с миштальным расходом вещества. Поэтому, если известны даже не очень точные результаты элементного анализа, рассчитать молекулярную формулу обычно не представляет затруднений. [c.182]

    Помимо молекулярной формулы вещества одной из наиболее полезных величин при определении структуры органических веществ является молекулярная масса. По величине молекулярной массы вещества во многих случаях можно сделать вполне квалифицированные заключения о его молекулярной формуле. Классическим способом определения молекулярной массы в течение длительного времени был метод Раста (понижение температуры замерзания растворов). Однако в настоящем издании описание Метода Раста опущено, так как этот метод не дает точных результатов для довольно широкого круга органических соединений. Для очень большого числа органических веществ удобно получать молекулярные массы с помощью метода масс-спектрометрии (разд. 3.5.2). Однако этот метод может оказаться доступным да-, леко не во всех учебных лабораториях. Простым методом, позволяющим получить сведения о молекулярной массе веществ, является осмометрия (разд. 3.5.1). Однако следует опасаться получения ошибочных слишком высоких значений молекулярной массы вследствие склонности определяемого вещества к образованию молекулярных агрегатов. Молекулярные массы или величины, находящиеся с ними в простых кратных отношениях, можно определить на основе эквивалентов нейтрализации или чисел омыления. Ввиду того что эти показатели связаны с наличием специфических функциональных групп (кислотных или аминогрупп и сложноэфирных групп соответственно), их определение описано в гл. 6. Для некоторых классов органических соединений применение масс-спектрального анализа затруднительно, и поэтому более целесообразно применять другие методы определения молекулярной массы. [c.31]

    Здесь будут рассмотрены пять методов определения молекулярной массы метод Раста (определение депрессии температуры замерзания), парофазная осмометрия, масс-спектрометрия, определение эквивалента нейтрализации и числа омыления. Метод Раста требует крайне простого оборудования. Кроме того, он часто оказывается полезен для тех веществ, молекулярную массу которых невозможно измерить масс-спектрометрически. Результаты, получаемые по методу Раста, в большинстве случаев оказываются лишь приближенными, поэтому описание техники проведения измерений по этому способу здесь не приводится . Осмометрия в паровой фазе и масс-спектрометрия требуют применения очень сложных приборов. Наиболее точные значения молекулярной массы, а часто молекулярная формула и структура вещества, могут быть получены с помощью масс-спектрометрии. Однако молекулярные массы веществ, термически нестойких, имеющих слишком малую упругость пара или не образующих стабильных молекулярных ионов, нельзя измерить с помощью масс-спектрометрии и приходится прибегать к другим методам измерения. С помощью методов титрования определяют эквиваленты нейтрализации (для числот и аминов) и числа омыления (для сложных эфиров). Од-яако эти методы обязательно требуют информации о числе и характере функциональных групп, присутствующих в молекуле данного неизвестного соединения. Поэтому эти методы обсуждаются в соответствующих разделах гл. 6. Осмометрия в паровой фазе нр [c.89]


Смотреть страницы где упоминается термин Масс-спектрометрия точная молекулярная масса: [c.417]    [c.417]    [c.291]    [c.113]    [c.121]    [c.86]    [c.466]    [c.349]    [c.170]    [c.274]    [c.423]    [c.279]    [c.188]    [c.189]    [c.423]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия молекулярной массы

Масс-спектрометрия молекулярный

Молекулярная масса

Молекулярный вес (молекулярная масса))

Молекулярный вес точный

Точна



© 2024 chem21.info Реклама на сайте