Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромато-масс-спектрометрия

    Карбоновые кислоты являются наиболее изученным классом кислородсодержащих соединений нефти. Содержание нефтяных кислот по фракциям меняется по экстремальной зависимости, максимум которой приходится, как правило, на легкие и средние масляные фракции [144]. Методом хромато-масс-спектрометрии идентифицированы различные типы нефтяных кислот. Большинство из них относится к одноосновным КСООН, где в качестве Я может быть практически любой фрагмент углеводородных и гетероорганических соединений нефти. Давно замечено, что групповые составы кислот и нефтей соответствуют друг друху в метановых нефтях преобладают алифатические кислоты, в нафтеновых - нафтеновые и нафтеноароматические кислоты. Обнаружены алифатические кислоты от С, до С25 линейного строения и некоторые разветвленного строения. При этом у нефтяных кислот соотношение н-алкановых и разветвленных кислот совпадает с соотношением соответствующих углеводородов в нефтях [181]. [c.19]


    Помимо важной роли в комбинированных методах анализа меюды разделения и концентрирования имеют для аналитической химии суперэкотоксикантов самостоятельную ценность. Далеко не всегда можно проанализировать образец без предварительного выделения определяемых соединений из природной матрицы. При этом, как правило, возникает необходимость их концентрирования по отношению к матричным компонентам, присутствующим в растворе или в газовой фазе. Даже такие методы, как хромато-масс-спектрометрия и газовая хроматография в сочетании с ИК-спектроскопией, не всегда могут решить задачи следового анализа. Целью концентрирования является снижение нижнего предела обнаружения, тогда как разделение позволяет упростить анализ и устранить влияние мешающих веществ [c.199]

    Наилучшим методом определения изопреноидных углеводородов является ГЖХ, проводимая в режиме линейного программирования температуры с применением высокоэффективных капиллярных колонок, или хромато-масс-спектрометрия. Хорошие результаты дает также предварительное концентрирование изопреноидных алканов путем клатратообразования с тиомочевипой. Изопреноидные алканы нефтей весьма различны по своей молекулярной массе и поэтому находятся в различных по температурам выкипания фракциях. Самый низкомолекулярный нефтяной изопреноид — [c.62]

    В процессе становления органическая геохимия использовала всю современную методологию своей предшественницы, т. е. молекулярный уровень исследований с определением не только структуры, но и пространственной конфигурации изучаемых молекул, а также все современные достижения аналитической и органической химии. Успехи органической геохимии связаны с широким применением наиболее современных методов анализа, таких, как высокоэффективная газовая и жидкостная хроматография, хромато-масс-спектрометрия с компьютерной обработкой данных (в том числе масс-фрагментография), спектры ЯМР на ядрах С. [c.3]

    Масс-спектрометрия и хромато-масс-спектрометрия [c.131]

    Особенно высокое место среди новых способов установления состава и строения органических соединений завоевала масс-спектрометрия. Самым эффективным средством структурного анализа индивидуальных соединений, содержащихся в различных природных смесях органических веществ, в том числе и в нефти, стала хромато-масс-спектрометрия, сочетающая большую разделяющую способность хроматографических методов и идентификационную мощь масс-спектрометрии. [c.4]


    Хромато-масс-спектрометрия [c.262]

    ИК [163, 168] спектрофотометры, работающие при фиксированной длине волны или способные к быстрой развертке и регистрации спектров, и масс-спектрометры. Последнее сочетание (хромато-масс-спектрометрия) получило всеобщее признание как наиболее мощное из всех средств установления структуры органических веществ. [c.22]

    Надежная качественная расшифровка хроматограмм была выполнена при помощи добавки эталонных углеводородов и хромато-масс-спектрометрии. При воспроизведении этих работ можно воспользоваться индексами удерживания разветвленных алканов, приведенных в конце этой главы в табл. 20. Использование значений индексов удерживания для анализа алканов нефтей всегда удобно, так как нормальные алканы обычно имеются в большинстве нефтей и доступны как эталоны. Опыт работы показал, что значения индексов удерживания разветвленных алканов достаточно хорошо воспроизводимы и мало зависят от условий хроматографирования, чего, к сожалению, нельзя сказать об индексах удерживания цикланов и ароматических углеводородов. [c.37]

    Сопоставляя данные табл. 21 и 22 с данными табл. 24—27, можно прийти к выводу о том, что настояш его равновесия среди структурных изомеров пет, а потому всякие расчеты температуры нефтеобразования обречены здесь на неудачу. Столь же далеки от равновесия и нафтеновые цикланы состава Сю. Из-за серьезных методических трудностей состав этих углеводородов в нефтях был детально расшифрован совсем недавно благодаря наличию большого числа эталонных углеводородов методом хромато-масс-спектрометрии [6). Всего в нафтеновых нефтях во фракции Сю (150—175 С) было определено 87 углеводородов, принадлежащих главным образом к шестичленным нафтенам Хроматограмма этой фракции, а также распределение углеводородов по группам приведены на рис. 25 и в табл. 28. [c.81]

    Эта реконструкция позволяет избежать длительных операций, связанных с выделением и концентрированием полициклических алканов нефтей. На рис. 90 в качестве примера приведены такие реконструкции, выполненные путем хромато-масс-спектрометрии насыщенных углеводородов с т. кип. >400° С двух нефтей Старогрозненского месторождения. Несмотря на совершенно различный химический тип этих нефтей (одна — типа А , вторая — тина Б ), распределение гопанов в них близкое, что указывает на единый источник их образования. [c.254]

    Состав азотистых оснований исследовали методами газожидкостной хроматографии, УФ- и ИК-спектроскопии, масс-спектро-метрии и хромато-масс-спектрометрии. [c.75]

    Исследование состава азотистых оснований осуществлялось методами ГЖХ, масс- и хромато-масс-спектрометрии, УФ- и ИК-спектроскопии. [c.81]

    Состав азотистых оснований, содержащихся в узких фракциях, был исследован методом хромато-масс-спектрометрии. На рис. приведена хроматограмма третьего хроматографического пика— оснований дизтоплива. Установление структур соединений производилось на основании сравнения масс-спектров соединений, содержащихся в узких фракциях, с эталонными спектрами [35, 36], а порядок выхода изомеров был взят из литературы [37]. [c.84]

    Модификация хромато-масс-спектрометра для анализа высококипящих нефтяных фракций описана в работе [214]. [c.138]

    Использование для идентификации одного или немногих пиков, что важно при анализе очень сложных смесей, описано в работе [215]. В сообщении [216] доказывается целесообразность использования помимо масс-спектрометра и другого детектора. В работе i[217] подробно рассматривается вопрос о возможных химических превращениях анализируемых веществ (на примере азотсодержащих соединений), протекающих в хромато-масс-спектрометре. [c.138]

    Для определения ПА в продуктах сгорания ОСМ используют хромато-масс-спектрометрию. В различных зонах пламени идентифицировано 33 индивидуальных соединения. [c.100]

    Сигма 1, хромато-масс-спектрометр МХ-1307М. Чувствительность определения зависит от вида соединения и типа детектора и составляет величину 0,1—3 мг/м . [c.27]

    Содержание сероводорода и тиолов в исходной и полученной после контакта с катализатором газовой смеси определяли известными химическими методами путем предварительного концентрирования их в системе из поглотителей. Идентификацию компонентов проводили на хромато-масс-спектрометре фирмы Finigan МАТ , модель 4021 с компьютером Nova 4С , наличие которого дает возможность автоматического поиска на базе 26000 масс-спектров. [c.108]

    Результаты исследования по идентификации компонентов в исходной газовой смеси из баллона, содержащего 6 мг/м серы, приведены на рис. 4.8. Как видно из приведенных данных, сероорганические соединения представлены рядом тиолов метилмеркаптаном, этилмеркаптаном и изопропилмеркаптаном. Идентифицированы также диметилсульфид и метилэтилсульфид. Хромато-масс-спектрометр Finigan МАТ использовали также для идентификации состава конденсата, образующегося при охлаждении продуктов реакции после реактора. [c.109]


    В начале 60-х годов были разработаны новые мощные аналитические методы (ГЖХ, хромато-масс-спектрометрия), совершенно изменившие наши представления о составе и строении нефтяных углеводородов, а отсюда и о принципах и методах классификации нефтей. Безусловным открытием века явилось обнаружение в нефтях большого числа так называемых реликтовых углеводородов (хемофоссилий). К таким углеводородам мы будем относить все углеводороды, сохранившие характерные черты строения исходных [c.8]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Углеводороды серии I и II элюируются на хроматограммах на обычном месте выхода монометилалканов с метильным заместителем, расположенным в середине молекулы. Состав и строение этих углеводородов были доказаны методом хромато-масс-спектрометрии. Количество рассматриваемых углеводородов в нефтях колеблется в пределах 10—90% от содержания нормальных алканов, элюирующихся в тех же интервалах. Типичная хроматограмма насыщенной -фракции 200° — к.к. для рассматриваемых нефтей приведена на рис. 20. Перечень найденных в нефтях метилалканов данной серии помещен в табл. 18. [c.57]

    Все нафтены можно условно разбить на две большие группы моно- и полициклические углеводороды. Состав и строение углеводородов первой группы, особенно ниакокипящих, исследованы достаточно подробно. По традиции моноциклические углеводороды делятся на группы пяти- и шестичленных нафтенов. Благодаря известным методам каталитического дегидрирования особенно хорошо были изучены нафтены с шестичленными кольцами. Следует, однако, иметь в виду, что концентрация гел-замещенных углеводородов ряда циклогексана начиная с цикланов g и выше становится уже весьма заметной, что, конечно, не может не отразиться на результатах дегидрирования. Таким образом, метод каталитического дегидрирования применительно к высшим нафтенам, особенно если учесть значительные концентрации сложных полициклических систем, имеет ограниченное применение. Более предпочтительным является определение строения углеводородов методами хромато-масс-спектрометрии, ГЖХ, а также встречным синтезом эталонов. [c.77]

    Большое значение, в частности, имеет осуществляемая методом хромато-масс-спектрометрии компьютизированная реконструкция хроматограмм, проводимая по характерным фрагментным ионам mie 217 для стерановых углеводородов и mie 191 для гопанов и трициклических тернанов (полиметилалкилпергидрофенантренов), mie ИЗ для изопреноидных алканов и т. д. [c.254]

    Наконец, при отсутствии образца-добавки последний заменяют веществом (суррогатом), которое в процессе измерения ведет себя одинаково или очень похоже на определяемый компонент. Выбор суррогатов требует тщательной методической проработки Наиболее распространены среди них меченью изотопами соединения, например ПХДД, ПХДФ, ПХБ и ПАУ на основе С, применяемые в хромато-масс-спектрометрии высокого разрешения. [c.160]

    Для более детального исследования состава азотистых оснований дистиллята 180—200"С был использован метод хромато-масс-спектрометрии. Хроматограмма азотистых оснований, полученная на карбоваксе 20 М, состоит из двух групп пиков. Хроматомасс-спектрометрический анализ каждого пика показал, что вторая, более четкая группа пиков, состоит из алкиланилинов с заместителями у атома углерода. Эти соединения составляют 90% выделенных азотистых оснований. Остальные 10% поданным масс-спектрометрии представлены алкиланилинами с заместителями у атома азота и алкилпиридинами с молекулярными весами 121, 135, 149, 163. [c.78]

    Для получения особо чистых образцов, карбазол марки ч очищался хроматографическим методом, затем сублимацией и зонной плавкой. Оценка чистоты образцов проводилась методом хромато-масс-спектрометрии. Обнаруженные примеси составляют антрацен—0,0%, метилкарбазол—0,005% и тетраметилнафта-лин — 0,005%. Исследование физических свойств проводилось на монокристаллических образцах, выращенных по методу Бриджмана [1]. Ориентация образцов осуществлялась рентгенографическим методом по прямым лауэграммам [2]. [c.123]

    Основным методом определения структуры индивидуальных компонентов нефти в последнее десятилетие стал метод хромато-масс-спектрометрии, сочетающий в себе высокую эффективность разделения методом газожидкостной хроматографии и возможность определения полной структуры органических соединений методом масс-спектрометрии. Большинство данных по определению индивидуальных компонентов нефти было получено именно этим методом. Как отмечалось выше, предварительное разделение на классы соединений (например, удаление аренов или концентрирование алканов) существенно облегчает задачу. Знание индивидуального состава фракций нефти необычайно важно для-разработки методик выделения интересных, порой необычных соединерий (так было с адамантаном, положившим начало новой области органической химии), методик переработки нефтяного сырья, установления важных деталей происхождения и изменения нефти и др. [c.137]

    Основным условием успешного применения (т. е. однозначного определения структуры индивидуальных соединений) хромато-масс-спектрометрии является наличие широкого круга эталонных углеводородов для их сравнения с нефтяной фракцией [211]. Это, естественно, надо отнести и к гетероатомным соединениям нефти. Если структуру алканов еще можно устанавливать и при наличии ограничен-ного числа эталонов, то для определения структуры мо-ноциклоалканов, полициклических углеводородов, алкилзамещен-ных ароматических и гетероциклических соединений нефти наличие эталонов становится все более настоятельным. Причина этого заключается в близости масс-спектров изомерных соединений. Для циклических неароматических соединений эта близость определяется легкостью перегруппировочных процессов (Н-сдвиг, скелетные- перегруппировки), движущей силой которых является по- [c.137]

    В мангышлакской нефти методом хромато-масс-спектрометрии идентифицированы моноциклоалканы Сю—Сгг, принадлежащие к гомологическому ряду гранс-1,1,3-метил-2-алкилциклогексана [64]. Алкильные заместители в углеводородах, начиная с Сн, имели изоиреноидный тип строения  [c.213]

    При экстракции часть МЭК, соприкасаясь с хлором и НСЮ, хлорируется с образованием ХК, Исследование примесей методом хромато-масс-спектрометрии показало наличие в их составе 1-хлор-2-бутанона, З-хлор-2-бутанопа и 4-хлор-2-бутанона с преимущественным содержанием З-хлор-2-бута-нона [197], Содержание их в экстрактном растворе не превышает 0,02-0.05 кг/кг ДХГ, Степень превращения МЭК в ХК - 0,5%, [c.63]

    В идеальном варианте адекватный метод анализа должен бьггь разработан до принятия соответствующих нормативных документов и учитывать последние достижения аналитической химии. Изучение распространения суперэкотоксикантов в окружающей среде, установление источников их эмиссии стало возможньш лишь в последнее время с появлением хромато-масс-спектрометрии и других современных аналитических методов. К сожалению, в больошнсгве руководств по контролю за загрязнением природных объектов вредными веществами практически не рассматриваются современные методы определения суперэкотоксикантов [12-17]. [c.11]

    С позиций эколого-аналитического мониторинга актуальной является проблема организации экспресс-контроля суперэкотоксикантов Применение традиционных методов (обычно хромато-масс-спектрометрии) требует длительного времени и больших затрат. Надежды на разработку тест-систем на основе иммуноферментных методов пока не оправдались из-за низкой селективности определений. Если для обычных з 1фязните-лей эта проблема не так актуальна, то для диоксинов, коэффициенты токсичности которых в зависимости от числа атомов хлора и их расположения в молекуле изменяются от нуля до единицы, важно знать, какие конкретные изомеры находятся в данном объекте. [c.30]

    Естественно, что обязательным условием скрининга является наличие положительного аналитического сигнала в тех случаях, когда зафяз-няющее вещество присутствует в пробе на уровне ПДК, Так, в качестве примера скрининга можно привести изучение 419 образцов молока на содержание афлатоксинов [20], из которых 19% дали положительную р( ак-цию Более тщательное исследование с помощью хромато-масс-спектрометрии подтвердило наличие афлатоксинов в молоке. В этом плане интерес представляют методы иммунохимического анализа [9,21-23], которые имеют высокую чувствительность и дают положительную реакцию в гфи-сутствии большинства суперэкотоксикантов на уровне 10 - 10 г/л. [c.155]

    Осознание важности экологических проблем заставляет исследователей привлекать для контроля суперэкотоксикантов все современные высокочувствительные методы аналитической химии. Так, при определении низких содержаний ионов высокотоксичных металлов в основном применяются методы оптической спектроскопии и люминесценции (атомноэмиссионная спектроскопия с возбуждением от высокочастотного плазменного факела (ИСП-АЭС), атомно-абсорбционная спектроскопия (ААС) с электротермической атомизацией и др.) (3 , а также инверсионная вольтамперометрия (ИВА) с химически модифицнрова1Шыми электродами [41. Для определения органических загрязнителей наряду с хроматографией наблюдается тенденция к более широкому использованию хромато-масс-спектрометрии, иммунохимических и флуоресцентных методов 2,5 Следует заметить, что в области разработки методов контроля за состоянием загрязнения природных сред суперэкотоксикантами имеется много нерешенных проблем В первую очередь это относится к методам экспрессного определения органических веществ. [c.244]


Смотреть страницы где упоминается термин Хромато-масс-спектрометрия: [c.140]    [c.108]    [c.383]    [c.140]    [c.212]    [c.107]    [c.94]    [c.154]    [c.196]    [c.254]    [c.263]    [c.263]    [c.269]   
Смотреть главы в:

Эколого-аналитический мониторинг супертоксикантов -> Хромато-масс-спектрометрия

Газохроматографическая идентификация загрязнений воздуха, воды и почвы -> Хромато-масс-спектрометрия

Молекулярный масс спектральный анализ органических соединений -> Хромато-масс-спектрометрия

Практическая газовая и жидкостная хроматография -> Хромато-масс-спектрометрия


Аналитическая химия Том 2 (2004) -- [ c.2 , c.279 ]

Химия нефти и газа (1996) -- [ c.139 ]

Масс-спектрометрия в органической химии (1972) -- [ c.292 , c.313 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.33 ]

Возможности химии сегодня и завтра (1992) -- [ c.197 , c.198 ]

Методы количественного анализа (1989) -- [ c.103 ]

Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.10 , c.100 , c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Высокоэффективный жидкостной хромато-масс-спектрометр

Газовая хромато-масс-спектрометрия

Газовая хромато-масс-спектрометрия времяпролетный масс-спектрометр

Газовая хромато-масс-спектрометрия детектор с ловушкой ионов

Газовая хромато-масс-спектрометрия ионизация электронным ударом

Газовая хромато-масс-спектрометрия квадрупольный масс-фильтр

Газовая хромато-масс-спектрометрия масс-спектрометр

Газовая хромато-масс-спектрометрия масс-спектры

Газовая хромато-масс-спектрометрия полная хроматограмма ионов

Газовая хромато-масс-спектрометрия прибор с магнитным полем двойной

Газовая хромато-масс-спектрометрия режим мониторинга отдельного иона

Газовая хромато-масс-спектрометрия режим полного сканирования

Газовая хромато-масс-спектрометрия тандемный масс-спектрометр

Газовая хромато-масс-спектрометрия фокусировкой

Газовая хромато-масс-спектрометрия фурье-преобразованием

Газовая хромато-масс-спектрометрия химическая ионизация

Газовая хромато-масс-спектрометрия хроматограмма ионов

Газовый хромато-масс-спектрометр

Гибридные методы газовая хромато-масс-спектрометрия

Жидкостной хромато-масс-спектрометр

Масс-спектрометр

Масс-спектрометр хромато-масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия хромато-масс-спектрометрия

Масс-спектрометрия хромато-масс-спектрометрия

Особенности устройства современных хромато-масс-спектрометров и их параметры

Применение хромато-масс-спектрометров в полевых условиях

Принципы масс- и хромато-масс-спектрометрии

Реакционная хромато-масс-спектрометрия

Сочетание хромато-масс-спектрометрии и газовой хроматографии с ИК-Фурье спектрометром в качестве детектора

Сочетание хромато-масс-спектрометрии и газовой хроматографии с атомно-эмиссионным детектором

Спектральные методы детектирования. Хромато-масс-спектрометрия

Способы ионизации, используемые в хромато-масс-спектрометрах

Хромато

Хромато масс спектрометр

Хромато-масс-спектрометрия определение диоксина

Хромато-масс-спектрометры квадрупольные

Хроматы



© 2025 chem21.info Реклама на сайте