Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность зависимость от химического строения углеводородов

    Установлено, что отдельные узкие фракции парафинов, выделенных из различных рафинатов при равных температурах, имеют приблизительно одинаковую температуру плавления. Количество твердых углеводородов, выделяющихся из раствора при его охлаждении на каждые 10°, уменьшается. Так, для рафината И1 фракции их количество в температурном интервале от +15° до +5° составило 5,54% вес. на рафинат, а в интервале —15° до —25°— 1,33%. С понижением температуры плавления фракций парафинов содержание в них твердых углеводородов, не образующих комплекс с карбамидом, увеличивается. Если в первых высокоплавких фракциях содержание этих углеводородов составляло 1ч-3%, то в легкоплавких фракциях парафинов их содержание достигло 50 6. Фракции парафинов, выделенные из различных рафинатов и имеющие одинаковую температуру плавления, содержат различное количество этих углеводородов. При одинаковых температурах депарафинизации из рафината IV фракции вместе с -парафинами выделяется больше твердых углеводородов, не образующих комплекс, чем из рафината II и III фракций, что прослеживается по рис. 1. На основании показателя преломления и температуры плавления были рассчитаны числа симметрии по Гроссу [5]. Полученные данные показывают, что между температурой плавления углеводородов, образующих комплекс, и остальными физико-химическими свойствами существует определенная зависимость. С понижением температуры плавления углеводородов, образующих комплекс, их плотность, показатель преломления и молекулярный вес вначале снижаются, а затем возрастают, что видно по рис. 2. Для н-парафинов закономерно снижение плотности, показателя преломления и молекулярного веса с понижением температуры плавления. Повышение молекулярного веса более низкоплавких фракций парафинов указывает на то, что в последних увеличивается содержание слабо разветвленных парафинов изостроения и циклических углеводородов с парафиновыми цепями нормального строения. На циклическое строение низкоплавких углеводородов, [c.225]


    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    Для жидкостей значения е намного больше, чем для газов и паров, и сильно различаются в зависимости от их химического строения. Среди жидкостей углеводороды обладают наименьшей диэлектрической проницаемостью. Для углеводородов различной структуры она неодинакова. Большими значениями диэлектрической проницаемости характеризуются ароматические углеводороды. Диэлектрическая проницаемость нефтепродуктов увеличивается с возрастанием плотности (табл. 58) [16], молекулярного веса [c.151]

    Растворители можно разбить на доноры электронной пары (ДЭП) и акцепторы электронной пары (АЭП) в зависимости от их химического строения и химических свойств [65]. К сожалению, некоторые растворители нельзя отнести ни к той, ни к другой категории например, алифатические углеводороды не обладают свойствами ни ДЭП, ни АЭП. Растворители-ДЭП преимущественно сольватируют молекулы или ионы, являющиеся акцепторами электронной пары. Обратное справедливо для растворителей-АЭП. В этом отношении большинство взаимодействий растворенного вещества с растворителем можно рассматривать как обобщенную реакцию льюисовой кислоты с льюисовым основанием. Полярные молекулы растворенного вещества всегда 1 еют основный центр с повышенной электронной плотностью и кислотный центр с пониженной электронной плотностью. Для количественной оценки донорной и акцепторной эффективности растворителей Гутманн предложил так называемые донорные числа ОМ и акцепторные числа ЛЛ [65] см. разд. 2.2.6 и табл. 2.3 и 2.4. Благодаря способности образовывать координационные связи растворители-ДЭП н растворители-АЭП в общем случае хорошо ионизируют растворенные вещества (разд. 2.6). [c.111]


    Адсорбенты по той же классификации, т. е. в зависимости от химического строения их поверхности, определяющего способность к тому или иному виду межмолекулярных взаимодействий, делятся на три типа. К первому типу относятся неспецифические адсорбенты, не несущие на своей поверхности ни ионов, ни каких-либо функциональных групп, связей или центров с локально сосредоточенными на периферии зарядами и не обладающие электронодонорными или электроноакцепторными центрами. На таких адсорбентах любые молекулы адсорбируются неспецифически. К адсорбентам этого типа можно отнести графитированные сажи, в особенности графити-рованную около 3000 °С термическую сажу, поверхность которой состоит в основном из базисных граней графита. Кроме графитированной сажи к неспецифическим адсорбентам относится чистый нитрид бора, молекулярные кристаллы благородных газов и насыщенных углеводородов, а также пленки из таких углеводородов и пористые углеводородные полимеры. Адсорбция на таких адсорбентах мало зависит от локального распределения в адсорбируемых молекулах электронной плотности, в частности, от наличия я-связей и неподеленных электронных пар. Различие в валентных состояниях атомов углерода в таких адсорбентах, как, например, графит, с одной стороны, и насыщенные углеводороды — с другой, сказывается на адсорбции незначительно, хотя и может быть выявлено в некоторых системах (подробнее см. разд. 1 гл. П и рис. 11,12) [90, 91]. [c.22]


Смотреть страницы где упоминается термин Плотность зависимость от химического строения углеводородов: [c.248]    [c.21]    [c.21]   
Современные и перспективные углеводородные реактивные и дизельные топлива (1968) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

К в зависимости от плотности

Строение химическое

Углеводороды плотность



© 2025 chem21.info Реклама на сайте