Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды содержание в нефтяных фракция

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]


    Для однородных фракций были определены содержание углерода и водорода, молекулярный вес, плотность, коэффициент преломления, удельная дисперсия, температура кипения и анилиновая точка, вязкость при 100°. В дополнение к этим данным для полностью гидрированных фракций экстракта был произведен приблизительный подсчет числа ароматических колец в молекулах фракций ароматического экстракта. Если допустить, что нафтеновые кольца в нефтяных углеводородах имеют такое же строение, как и бензольные кольца, и что кольца полициклических ароматических и циклопарафиновых углеводородов имеют конденсированную структуру, то на основании приведенных выше данных можно было определить структуру колец циклических углеводородов и число углеродных атомов в парафиновой боковой цепи, связанной с кольцом. [c.31]

    В литературе описаны немногочисленные опыты с модельными веществами с температурой кипения в пределах бензиновой и керосиновой фракций [139, 140]. Далее были разработаны весьма удовлетворительные методы для определения с помощью хроматографии содержания ароматических углеводородов в нефтяных фракциях, кипящих в этих же пределах [141, 142], причем такое же разделение было достигнуто и другими исследователями [143]. Мэр и Форциати [144, 145] достигали разделения, применяя вымывание образца из силикагеля большим количеством растворителей, которые удаляли все парафины и нафтены. Липкин и др. [146] видоизменили этот метод для определения ароматических соединений в смесях углеводородов, кипящих выше 200°, с точностью около 1%. Конрад [147] разработал скоростной метод анализа и применил в качестве индикатора явление флуоресценции. [c.159]

    Диспропорция между приростом добычи нефти и увеличивающейся потребностью в моторных топливах, а также перспективы развития и практика эксплуатации судовых дизельных установок у нас в стране и за рубежом, привели к изменениям в структуре производства нефтяных топлив за последние десятилетия. В их составе стали широко использоваться продукты крекинга, коксования и других вторичных процессов, отличающиеся от продуктов прямой перегонки нефти по своему углеводородному составу большим содержанием непредельных и ароматических углеводородов в дистиллятных фракциях и асфальтенов и смол - в остаточных, а по физикохимическим свойствам - более высокой плотностью, вязкостью, коксуемостью и температурой застывания, содержанием серы и ванадия, меньшим цетановым числом [23, 24, 29, 40, 58, 62, 65-70]. [c.42]


    Наибольшее количество нейтральных смол встречается в нефтях, богатых ароматическими углеводородами. Содержание смол в дестиллатах увеличивается по мере возрастания температуры кипения нефтяных фракций. [c.41]

    Примером этого является определение содержания ароматических углеводородов в легких фракциях нефтяного дистиллята [10]. Как можно видеть из табл. 8.1, значения 5 ароматических углеводородов значительно превышают цифру 200. Основными насыщенными компонентами легкого нефтяного дистиллята являются п-гептан и метилцикло-гексан, для которых значения 5 почти точно совпадают 5=122,4. Процентное содержание ароматического углеводорода в образце определяется из уравнения [c.135]

    Ароматические экстракты из нефтяных фракций. Нафталины, содержащиеся в нефти или любой заводской фракции, разумеется, концентрируются при экстракции ароматических углеводородов. В практических условиях с целью получения ароматического концентрата с достаточно высоким содержанием алкилнафталинов для промышленного производства нафталина может использоваться экстракция циркулирующих газойлей каталитического крекинга жидким ЗОа. Опубликован [5] состав двух керосиновых экстрактов А и Б (табл. 5). [c.206]

    Ароматизация нефти. Другим источником ароматических углеводородов может явиться нефть. Уже давно было замечено, что нефть некоторых месторождений содержит наряду с предельными углеводородами и ароматические. Богата ароматическими углеводородами уральская нефть. Работами Н. Д. Зелинского и Ю. К. Юрьева установлено, что в некоторых ее фракциях содержание ароматических углеводородов превышает 50%. Однако в нефтях других месторождений содержание ароматических углеводородов очень мало. В связи с этим уже давно были начаты работы по так называемой ароматизации нефти. Еще в 1878 г. А. А. Летний, один из основоположников крекинг-про-цесса, установил, что при проведении этого способа переработки нефти в определенных условиях продукты расщепления нефтяных уг-леводородов превращаются в ароматические углеводороды. В 1880 г. им был построен в Баку завод для получения ароматических углеводородов из нефтяных остатков. [c.108]

    Дизельные топлива, производимые на уфимских НПЗ, представляют собой гидроочищенные керосино-газойлевые фракции (150-350°С) различного вида нефтяного сырья, перерабатываемого на предприятиях АО Башнефтехим . Усредненные значения содержания серы и ароматических углеводородов в прямогонных фракциях дизельных топлив, получаемых из различного нефтяного сырья, соответственно составляют арланская нефть (2.0 30% масс.), карачаганак-ский газовый конденсат (0.7 20-22% масс,), западно-сибирская сернистая нефть (0.7 28% масс.), западно-сибирская малосернистая нефть (0.2 26% масс.) [110]. [c.134]

    Примером может служить измерение анилиновой тоЧ ки нефтяных фракций. Если последние рассматривать как смеси ароматических I на рис. 28) и неароматических (/ на рис. 28) углеводородов, то по температуре смешения данной фракции с анилином (50 50) можно судить о содержании ароматических углеводородов в этой фракции. Из рис. 29 следует, что меньшему содержанию ароматических углеводородов (г) соответствует более высокая температура смешения анилиновая точка ). Конечно, анилиновая точка зависит также от (среднего) молекулярного веса нефтяной фракции.- [c.53]

    Аддитивность свойств широко используется при анализе нефтепродуктов. Примером может служить метод определения относительного содержания ароматических углеводородов в узких фракциях бензина. С этой целью находят показатели преломления узкой нефтяной фракции до (п ) и после удаления из нее ароматических углеводородов п . По известному приращению коэффициента преломления нефтяной фракции Ъ) от прибавления к ней 1% ароматических углеводородов вычисляют содержание ароматических углеводородов А по формуле  [c.98]

    Определение содержания ароматических углеводородов в нефтяных фракциях методом газо-жидкостной хроматографии. (НФ тетра- -цианэтиловый эфир пентаэрита.) [c.211]

    Исследования кристаллической структуры сплавов н-парафинов с нафтенами, имеющими длинные боковые цепи нормального строения, и этих же сплавов с добавлением твердых ароматических углеводородов, содержащих в молекуле прямые цепи, позволили [23] сделать ряд интересных выводов. Сплавы парафинов и нафтенов в отношении 1 1 имеют структуру, приближающуюся к парафиновой. Увеличение содержания нафтенов в сплаве придает кристаллам форму, типичную для нафтенов. При кристаллизации смеси н-парафиновых, нафтеновых и ароматических углеводородов с боковыми цепями нормального строения в отношении 1 1 0,5 образуется мелкокристаллическая структура, типичная для твердых ароматических углеводородов. Изучение сплавов различных групп твердых углеводородов, содержащихся в нефтяных фракциях, имеет большое теоретическое и практическое значение, так как характе(ризует направление технического иапользования нефтяных парафинов и церезинов. [c.128]


    В СССР в промышленных масштабах нефть добывается так же давно, как и в США. Нефтеносные площади Баку известны в течение столетий как источники нефти и газовых факелов. Наиболее богатые нефтяные месторождения расположены между Черным и Каспийским морями, а также в районах несколько севернее и восточнее этой области [3, 24, 40]. Существует предположение, что в дальнейшем добыча будет развиваться в центральных районах Азии, на тысячу миль и более к востоку от Баку и к северу от Афганистана. Можно считать, что нефтеносные структуры и свиты напоминают нефтеносные структуры и свиты США. Около одной трети перспективных площадей лежит севернее 60° северной широты, и разработка их представляет некоторые затруднения Старые месторождения Баку (плиоценовые свиты) дают нефти смешанного основания, содержащие мало серы и довольно большие количества смолистых и асфальтовых веществ. Эти нефти характеризуются низким содержанием бензиновых фракций (менее Ю ), низким содержанием ароматических углеводородов но высоким содержанием нафтеновых и изопарафиновых углеводородов и поэтому довольно высоким октановым числом. Только в некоторых месторождениях, как, например, в Сураханском, добываются нефти более парафинового основания, используемые в качестве сырья для производства керосина и смазочных масел. Грозненские нефти (миоцен) обладают более высоким содержанием бензиновых и керосиновых фракций (25 и 15%), [c.56]

    За последние 150 лет параллельно с развитием основных теоретических представлений в области химии выяснялся общий состав нефти [14]. Однако замечательное постоянство химического состава сырых нефтей стало понятным лишь около 40 лет назад. Ш. Ф. Мабери на основании многочисленных и тщательно выполненных анализов нашел, что даже наиболее различающиеся между собой нефти содержат от 83 до 87 % углерода, от И до 14% водорода, а также кислород, азот и серу в количествах от 2 до 3% [28]. Он показал, что это постоянство может быть объяснено очень просто, если предположить, что каждая нефть представляет собой смесь небольшого числа гомологических рядов углеводородов, причем число индивидуальных членов каждого ряда может быть очень велико. Различие между двумя любыми нефтями заключается в вариациях содержания каждого ряда и содержания индивидуальных углеводородов, присутствующих в каждом ряду. Природа гомологических рядов, составляющих нефть, такова, что эти вариации но оказывают большого влияния на состав общей смеси. Таким образом, в результате, несмотря на некоторые различия, элементарный состав одной нефти весьма близок к элементарному составу другой нефти. Этот общий вывод имеет важное техническое значение, так как позволяет получать довольно однородные нефтяные продукты из нефтей различного состава. Вместе с тем методы переработки сырых нефтей должны быть весьма разнообразными и обеспечивать получение товарных продуктов в нужном количестве и необходимого качества. Например, небольшое содержание асфальтовых веществ не может заметно отразиться на элементарном составе всей нефти в целом, точно так же, как и увеличение содержания ароматических углеводородов в керосиновой фракции на 10% не может заметно изменить отношение содержания углерода и водорода. Однако каждое из этих изменений может значительно увеличить трудности переработки нефти и уменьшить выход чистых продуктов 2. [c.49]

    Если углеводород содержит структурные группы разных типов, он может быть отнесен к нескольким классам. В соответствии с принятым выше определением в таком случае общее содержание ароматические олефиновые 4- нафтеновые - - парафиновые в нефтяной фракции может быть значительно выше 100%. Чтобы избежать этого осложнения, другие классы углеводородов могут быть определены как нафтено-ароматические и т. п. Вследствие быстро растущего числа и сложности компонентов во фракциях с более высокой температурой кипения та часть сырой нефти, которая может быть в общем определена как масляная часть, практически мало подходит для такого типа анализа. [c.367]

    Пиролиз. Не менее важным узлом в технологическом комплексе бакинских заводов является пиролиз нефтяных фракций обеспечивающий производство этилового спирта сырьем с большим содержанием этилена, а также выработку ароматических углеводородов в виде пиробензола (в качестве высокосортных добавок к авиационным бензинам). [c.175]

    Высшие ароматические углеводороды из нефтяных фракций представлены различными циклическими системами. Их можно выделить из более или менее узких нефтяных фракций при помощи хроматографических методов. После пропускания раствора масел или самих масел через силикагель все углеводороды, содержащие ароматические ядра, поглощаются и затем могут быть выделены вытеснением растворителями. Если пользоваться в качестве вытесняющей жидкости легким бензином, не содержащим ароматических углеводородов, и собирать последовательные порции ароматических углеводородов, можно, удалив легкий бензин, убедиться в том, что свойства выделенных ароматических углеводородов последовательно изменяются. Сперва идет фракция, называемая легкими ароматическими углеводородами, обладающая удельным весом от 0,87 до 0,89 и показателем преломления от 1,485 до 1,498. Следующая фракция — средних ароматических углеводородов — имеет удельный вес от 0,89 до 0,96 и показатель преломления от 1,500 до 1,540. Наконец, последней извлекается фракция удельного веса 0,97 до 1,03, с показателем преломления от 1,55 до 1,59. Эти пределы колеблются в зависимости от сорта нефти и температуры кипения исследуемой фракции и приведены здесь только в качестве иллюстрации. Очевидно, что ароматические углеводороды имеют совершенно различную структуру и переменное содержание боковых цепей метановой или нолиметиленовой природы. [c.117]

    Откуда бы ни приходил в нефтяные недра кислород, необходимый для образования смолистых веш,еств нефти, естественно предполагать, что содержание смолистых веществ является мерой этого окислительного действия. Нефти, очень богатые смолами, считаются поэтому более окисленными. Это положение обычно иллюстрируется большим сходством ароматических углеводородов нефтяных фракций со смолистыми веществами. Постоянное присутствие кислорода не только в нейтральных смолах, но и в ароматических углеводородах высших нефтяных фракций, как будто указывает на особую восприимчивость именно этих углеводородов к фиксирован1ГЮ кис-аорода. Практически все гетерогенные соединения нефти сконцентрированы именно в неперегоняюпцгхся остатках, т. е. в ее смолистых веществах. Однако в смол ах присутствует не только кпслород, но и азот и сера, в частности порфириновые комплексы. Поэтому, в случае окисления атмосферным кислородом, присутствие в смолах азота надо объяснить или фиксированием этого азота, что невероятно с химической точки зрения, или допустить, что азот в смолах не связан с атмосферным азотом. В последнем случае азот приходится рассматривать как вещество, унаследованное от исходного материала нефти. Если стать на эту точку зрения, гораздо логичнее допустить такое же происхождение и связанного кислорода в смолах, т. е. придется отказаться от гипотезы внедрения кислорода в смолы уже после формирования [c.156]

    Многие исследователи применяли метод анилиновых точек для грубого определения содержания ароматических углеводородов в нефтяных фракциях. Тизард и Маршалл [232] получили хорошие результаты, разработав графический метод для вычисления содержания в бензинах ароматических углеводородов, причем определяли анилиновые точки до и после удаления ароматических компонентов 98—100%-ной серной кислотой. Тиличеев и Думская [233] приняли простую зависимость между содержанием ароматики (весовые %) и анилиновой точкой до и после удаления ароматики, в зависимости от природы и концентрации ароматических и неароматических компонентов в смеси. [c.209]

    Для получения фракции смеси ксилолов обычно используют бензиновую фракцию 105—140°С, из которой после риформинга смесь ароматических углеводородов экстрагируется диэтиленгликолем. Однако для получения смеси ксилолов более выгодным оказывается каталитический риформинг фракции 105—124 °С с последующим выделением смеси ксилолов из катализата ректификацией [11, 32]. Ректификация стабильного катализата проводится последовательно в двух колоннах. В первой колонне четко отгоняется толуол и все предельные углеводороды, содержащиеся в ка-тализате, с минимальным отбором этилбензила и ксилолов. Во второй колонне смесь ксилолов отгоняется от высококипящих ароматических углеводородов. Отбор смеси ксилолов составляет 92— 95% (масс.), качество смеси ксилолов удовлетворяет треб01ваниям, предъявляемым к ксилолу техническому нефтяному по ГОСТ 9410—78 марки А и дополнительному условию по содержанию непредельных углеводородов Сд и выще не более 0,15% (масс.). [c.248]

    В качестве сырья используют смеси жидких продуктов нефтяного (60—70 % об.) и каменноугольного (30—40 % об.) происхождения. Из продуктов нефтепереработки наиболее широко применяют термогазойль, зеленое масло, экстракты газойлей каталитического крекинга, а из продуктов коксохимии — антраценовое масло, хризеновую фракцию и пековый дистиллят. Сырье представляет собой углеводородные фракции, выкипающие при температуре выше 200 °С и содержащие значительное количество ароматических углеводородов (60— 90 % масс.). Применяемое сырье в соответствии с требованиями стандартов контролируется по следующим показателям плотность, индекс корреляции, показатель преломления, вязкость, содержание серы, влаги и механических примесей, коксуемость. [c.108]

    На IV Международном нефтяно.м конгрессе А. В. Топчиев [3] указал, что из моноциклических ароматических углеводородов в керосиновых фракциях некоторых советских нефтей установлено содержание I, 2, 3, 4- и 1, 2, 4, 5-тетраметнл-бензолов. На том же нефтяном конгрессе Миллер [4] указывал на присутствие 1-метил-З-бутилбензола в оклахомской нефти. [c.36]

    АНИЛИНОВАЯ ТОЧКА, критич. т-ра растворения индивидуальных углеводородов или нефтяных фракций в анилине, выше к-рой образуется истинный р-р. А. т. нефтяных фракций зависит от содержания углеводородов разл. классов. Для алканов она лежит в пределах 69-84 °С, для цик-лоалканов-от 18 до 54 °С, для авиакеросинов-от 59 до 61 °С, для ароматических углеводородов-ниже —20 "С. А. т. используется для определения группового состава нефтепродуктов, содержания в них ароматических углеводородов, расчета дизельного индекса топлив (см. Дизельные топлива). [c.166]

    Углеводороды ряда индана относятся к тому типу моноциклических ароматических углеводородов, содержание которых в нефтяных фракциях относительно невелико. Опубликовано несколько работ, в которых указывается на присутствие индана и его гомологов в нефтяных фракциях [47—49], в продуктах превращения углеводородов [50], а также в продуктах переработки каменных углей. [c.18]

    В табл.28 приведены результаты ис-пыхания катализаторов /Л-Мо/А 20з в восстановленной и сульфидной формах в процессе деароматизации керосиновых фракций с различным содержанием серы. Видно, что более высокая эффективность восстановленной формы катализатора по сравнению с сульфидной проявляется только при повышенном содержании активных компонентов (до 40%). Применение восстановленной формы -Мо-катализа-тора позволяет увеличить степень гидрирования ароматических углеводородов в нефтяном сырье более чем в 3 раза. Для получения близких результатов на сульфидной форме катализатора температуру процесса следует поднять более чен на 150°С при пониженной более чей [c.65]

    В бензиновых фракциях содержатся все известные ароматические углеводороды. Содержание бензола обычно невелико по сравнению с простейЩими гомологами бензола, такими, как толуол, все три ксилола и т. д. В табл. 35 приведены ароматические углеводороды, которые был[г выделены из различных низкокипящих нефтяных фракций Россини и сотрудниками, а также Шварцем и др. [c.220]

    Ароматические углеводороды с 8 и более углеродными атомами получаются в значительных количествах при каталитическом крекинге многих индивидуальных углеводородов, а также и нефтяных фракций. Результаты, приведенные в предыдущих статьях [1,2], показали, что содержание ароматических углеводородов в бензиновых фракциях может быть повыщепо путем доалкилирования высококипящих ароматических углеводородов или крекингом с сопутствующим дегидрированием, при котором происходит перераспределение водорода в и более высокомолекулярных нафтенах, особенно гидроароматического характера. Однако эти реакции не объясняют присутствия некоторого количества ароматических углеводородов в продуктах каталитического крекинга парафинов и алифатических олефинов состава и выше [1,9]. Одно из возможных объяснений состоит в том, что ароматические углеводороды образуются при дегидро-циклизации некоторых алифатических углеводородов аналогично превращениям н-гептана или к-гептена в толуол над хромовоалюминиевым катализатором. Тем не менее довольно слабая дегидрогенизационная способность (выделение свободного водорода) крекингового катализатора, а также тот факт, что образование толуола из гептана в довольно жестких условиях каталитического крекинга не наблюдалось, приводит к необходимости иного объяснения образованию ароматических углеводородов из высокомолекулярных алифатических углеводородов над обычными крекинговыми катализаторами. [c.131]

    Содержание иеуглс]юдородных компонентов в ароматикс, выделенной из тяжелых нефтяных продуктов, зависит от двух факторов — пределов выкипания продуктов и происхождения нефти. Для данной нефти содержание неуглеводородных компонентов в ароматике быстро возрастает с увеличением пределов выкипания фракции. За некоторым исключением, ароматические углеводороды, выделенные из бензинов, бывают всегда чистыми, содержащими в среднем около 1 % неуглеводородных (сернистых) соединений. Содержание неуглеводородных компонентов в ароматике из газойля или масляного сырья варьирует в широких пределах — от 3—4 % для пенсильванских нефтей до 2(3—25 % для нефтей, добываемых в Калифорнии, и для нефтей, содержащих значительные количества серы и азота. [c.27]

    Химический состаи газойля и масляного сырья в общем соответствует рассмотренному выше постепенному уменьшению содержания парафиновых углеводородов и увеличению содержания ароматических с возрастанием пределов выкипания нефтяных продуктов. Существует разница между сырыми нефтями, богатыми и бедными твердыми парафинами. Содержание парафиновых углеводородов в тяжелых фракциях нефти, богатых твердым парафином, уменьшается с увеличением пределов выкипания минимум на 20—25%, а затем остается постоянным, в то время как в нефтях, бедных твердым парафином, содержание парафиновых углеводородов улкньшается до полного их исчезновения. [c.28]

    Нефтяная промышленность Румыния, как и СССР, является старой. 60 нефтяных колодцев разрабатывалось уже тогда, когда Дрек пробурил первую скважину в Пенсильвании. Румынские нефти разнообразны по своим свойствам, но в общем характеризуются низким содержанием серы и высоким содержанием ароматических углеводородов [24, 15а, 18а, 32а]. Действительно, наличие ароматических углеводородов в керосиновых дистиллятах привело Эделеану в 1909 г. к разработке процесса экстракции керосиновых фракций жидкой двуокисью серы — процесса, который является предшественником С01ременных методов очистки нефтепродуктов экстракцией растворителями [12]. [c.57]

    Н. И. Черножукова [24—26]. Эти исследования позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы, причем характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей (рис. 35 а в). Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются по размерам и степени слоистости. Наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные парафиновые углеводороды (см. рис. 35, а), нафтеновые и особенно ароматические углеводороды характеризуются меньшей величиной кристаллов и менее слоистым строением (см. рис. 35, б, в). При совместной кристаллизации твердых углеводородов в неполярных, растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т. е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. В данном случае возможность образования смешанных кристаллов обусловлена наличием в молекулах твердых углеводородов длинных парафиновых цепей в основном нормального строения. При совместной кристаллизации из неполярнрй среды форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафиновыми чем больше циклических углеводородов, тем меньше размер кристаллов и число наслоений. [c.129]

    После отгонки от нефтяной смолы легкого и среднего масла остается густая, почти черная смола, из которой в вакууме или перегонкой с водяным паром, в крайнем случае перегонкой на толом огне (в последнем случае со значительным разложением), выделяется тя-ягелое масло. Оно ггредставляет собой довольно вязкую (до 6° Э при 50°) оранжевую или светлокоричневую жидкость и содержит главным образом нефтяные углеводороды антрацен, фенантрен, отчасти хриаен и др. Часто эта фракция нефтяной смолы содержит, и неразложенный парафин. Отличие от соответствующей каменноугольной фракции главным образом заключается в низком содержании ароматических углеводородов. [c.425]

    Из данных таблицы 44 следует, что групповой углеводородный состав масляных фракций отличается друГ от друга содержание ароматических углеводородов во фракциях гюргян-ской нефти (Нефтяные Камни) в 1,8 раза больше, чем во фракции балаханской масляной нефти, и соответственно в 1,3 раза больше, чем в бузовнинской нефти. [c.123]

    Основная часть ароматических углеводородов, содержащихся в нефтяных дистиллятах, состоит из гибридных структур, т. е. имеет наряду с ароматическими также нафтеновые циклы и алкильные боковые цепи. Такие нафтено-ароматические углеводороды обладают большими значениями /плотности, показателя преломления и более крутой вязкостно-температурной кривой, чем обычные алкилароматические углеводороды. Нафтено-ароматические углеводороды различаются содержанием ароматических и нафтеновых циклов в молекулах и их расположением, а также числом и строением боковых цепей. Предполагается, что превалирующей структурой нафтено-ароматических углеводородов в исходных дистиллятах и готовых маслах является конденсированная, так как при гидрировании ароматических фракций до полного насыщения их водородом получены нафтеновые углеводороды с 6—8 циклами. В качестве примера таких гибридных па-рафино-нафтено-ароматических структур С. Р. Сергиенко [19] приводит соединения (I—V), высказывая предположение, что наиболее вероятны конденсированные структуры типов I и II (где м=1—5 и более)  [c.16]

    Химический состав твердых углеводородов масляных фракций зависит от характера нефти, из которой они выделены. Так, в масляных фракциях нефтей парафино-нафтенового основания содер-жится меньше твердых ароматических углеводородов, чем в соответствующих по температурам кипения фракциях, выделенных из тяжелых высокоароматизированных нефтей. Химический состав твердых углеводородов масляных фракций зависит также от пределов выкипания этих фракций. По мере повышения пределов выкипания фракции одной и той же нефти содержание твердых парафиновых углеводородов уменьшается, а твердых нафтеновых и ароматических углеводородов возрастает (рис. 26). Церезины, концентрирующиеся в остатке от перегонки мазута, представляют собой в основном смесь нафтеновых углеводородов и в меньших количествах содержат твердые ароматические и парафиновые углеводороды, причем их соотношение зависит от характера нефти, из которой выделен церезин. Изопарафиновые углеводороды содержатся в церезинах в сравнительно небольших количествах. Химический состав природных церезинов аналогичен составу нефтяных церезинов [3]. [c.117]

    Характеристика фракций ароматических углеводородов. Существует ароматическое сырье двух основных видов коксохимическое и нефтехимическое, различающееся главным образом содержанием органических соедииеини серы. Нефтехимические продукты из-за отсутствия серы в исходных нефтяных фракциях или в результате гидроочистки имеют всего 0,0001—0,0027о 5, а кок- [c.70]

    В настоящее время разработаны и внедрены разные процессы денормализацви депарафинизации нефтяных фракций, позволяющие получать жидкие парафины хорошего качества. Однако поскольку потребители предъявляют все более жесткие требования к качеству жидких парафинов (особенно по содержанию ароматических углеводородов и фракционному составу), советские и зарубежные исследователи продолжают работы по усошршенствованию процесса депарафинизации нефтяных фракций. Б последнее время в больших масштабах ведутся работы в направлении пол ения жидких парафинов из дизельных топлив. Одновременное получение низкозастывающего дизельного топлива и жидких парафинов позволит снизить их себестоимость. [c.171]


Смотреть страницы где упоминается термин Ароматические углеводороды содержание в нефтяных фракция: [c.135]    [c.145]    [c.174]    [c.7]    [c.174]    [c.95]    [c.25]    [c.340]    [c.49]   
Современные и перспективные углеводородные реактивные и дизельные топлива (1968) -- [ c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте