Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серин в синтезе триптофана

    Аминокислоты можно получать путем выделения из белковых гидролизатов, с использованием микробиологических методов, с помощью ферментативных методов или путем химического синтеза. Первые три подхода дают ь-аминокислоты, а при химическом синтезе получаются оь-соедине-ния, которые нужно еще разделить на оптические антиподы. До недавнего времени аминокислоты удавалось полущть только в очень малых количествах, но в последние годы их производство приняло индустриальные масштабы и в 1977 г. достигло 400 ООО т. Аминокислоты используются как вкусовые добавки в пищевой промышленности (глутамат натрия, аспарагиновая кислота, Щ1СТИН, глицин и аланин), как питательные растворы и терапевтические средства в медицине (все протеиногенные аминокислоты), как добавки для улучшения неполноценных питательных белков и фуража (лизин, метионин, триптофан), как промежуточные вещества в косметической промышленности (серин, треонин, цистеин), а также как исходные вещества для синтеза различных пептидов. [c.38]


    Информация, заложенная в ДНК и РНК, реализуется в процессе синтеза белка. Механизмы передачи информации от ДНК на РНК понятны и очевидны, так как цепь нуклеотидов характерна для обеих структур, а матричный синтез предусматривает полную идентичность их последовательностей. Но каким же образом передается информация от РНК, содержащей всего четыре нуклеотида, на белок, содержащий 20 различных аминоьсислот Если бы каждый нуклеотид передавал информацию на синтез одной аминокислоты, то всего кодировалось бы 4 аминокислоты. Не может код состоять из двух нуклеотидов, так как в этом случае можно было бы охватить не более 16 аминокислот (4 = 16). Работами М. Ниренберга и соавторов было установлено, что для кодирования одной аминокислоты требуется не менее трех последовательно расположенных нуклеотидов, называемых триплетами или кодонами. При этом между отдельными кодонами нет промежутков, и информация записана слитно, без знаков препинания. Число сочетаний 4 дает основание полагать, что 20 аминокислот кодируются 64 кодонами. Экспериментально установлено, что таких кодонов меньше, всего 61. Оставшиеся три кодона не несут в себе информации, однако два из них используются в качестве сигналов терминации. Выявлена также интересная особенность взаимодействия кодона с антикодоном. Оказалось, что первое и второе азотистые основания кодона образуют более прочные связи с комплементарными основаниями антикодона. Что же касается третьего основания, то эта связь менее прочная, более того, основание кодона может спариваться с другим, не комплементарным основанием антикодона. Этот феномен называют механизмом неоднозначного соответствия или качания. В соответствии с этим урацил антикодона может взаимодействовать не только с аденином, но и с гуанином кодона. Гуанин антикодона способен связываться не только с цитозином, но и с урацилом кодона. Это указывает на возможность нескольких кодонов кодировать одну и ту же аминокислоту. И действительно, было установлено, что ряд аминокислот кодируется двумя и более антикодонами (табл. 29.1). Из таблицы видно, что только две аминокислоты — метионин и триптофан — кодируются при помощи одного кодона. Число кодонов для остальных аминокислот варьирует от двух (для аргинина, цистеина и др.) до шести (для лейцина и серина). Тот факт, что одной и той же аминокислоте соответствует несколько кодонов, называется вырожденностью [c.462]

    Аминокислоты в глюконеогенезе. Обмен белков тесно связан с обменом углеводов через цикл трикарбоновых кислот. Атомы углерода различных аминокислот мотут преобразовываться в ацетил-КоА или промежуточные продукты цикла, т. е. аминокислоты могут служить источником в синтезе углеводов. По способности участвовать в глюконеогенезе аминокислоты делятся на три группы I) гликогенные, 2) кетогеи-иые, 3) гликогенные и кетогенные. Гликогенные — это аминокислоты, которые могут быть предшественниками пировиноградной кислоты, а следователбно, и глюкозы. К гликогенным относятся 15 аминокислот аланин, аргинин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, глицин, гистидин, метионин, цистеин, пролин.серин, треонин, триптофан, валнн. Кетогенные — это, аминокислоты, при катаболизме которых может образоваться ацетоуксусная кислота. Лейцин — только кетогевяая аминокислота. Четыре аминокислоты (фенилаланин, тирозин, лизин, изолейцин) являются одновременно и гликогенными, и кетогенными. [c.6]


    К С. относятся также нек-рые ферменты, катализирующие различные синтетич. реакции в обмене аминокислот, напр, триптофан-синтаза, осуществляющая образование триптофана из серина и индола, а также цистеин-синтаза, катализирующая синтез цистеина из серина и HaS. Коферментом обеих этих С. является пиридоксальфосфат. [c.442]

    Часть аминокислот транспортируется к другим органам и тканям, где они идут на образование тканевых белков, ферментов, гормонов. Каждый белок организма имеет присущий только ему аминокислотный состав. Поэтому для синтеза белков необходим определенный ассортимент аминокислот. В первую очередь требуются аминокислоты, которые в организме животного не образуются. Эти аминокислоты называются незаменимыми. К ним принадлежат лизин, валин, лейцин, изолейцин, метионин, треонин, фенилаланин, триптофан, гистидин, аргинин. У птиц незаменимыми аминокислотами могут быть глицин и серин, особенно в период их интенсивного роста. [c.121]

    Спектроскопические характеристики многих ферментов и субстратов изменяются при образовании Е8-комплекса подобно тому, как меняется характерный для дезоксигемоглобина спектр поглощения при связывании кислорода или при окислении в ферриформу, что было описано ранее (рис. 3,18). Эти изменения проявляются особенно отчетливо, если фермент содержит окрашенную простетическую группу. Хорошей иллюстрацией может служить триптофан-синтаза-бактериальный фермент, содержащий в качестве простетической группы пиридоксальфосфат. Этот фермент катализирует синтез Ь-триптофана из Ь-серина и индола. При добавлении Ь-се-рина к ферменту резко возрастает флуоресценция пиридоксальфосфатной группы (рис. 6.8). Последующее добавление второ- [c.108]

    В печени кортизол стимулирует синтез белков, в частности ферментов, участвующих в глюконеогенезе (тирозинаминотрансфераза, триптофан-пирролаза, серин-треонин-дегидратаза, карбоксикиназа фосфоенолпирувата). Содержание этих ферментов в гепатоцитах может повышаться в несколько раз, соответственно увеличивается и скорость глюконеогенеза. [c.403]

    Предполагаемый промежуточный продукт при синтезе триптофана, Серин образует шиффово основание с ПЛФ, связанным с р-цепью белка, которое затем дегидратируется и образует шиффово основание аминоакрилата (показано красным цветом). Этот связанный с ферментом промежуточный продукт атакуется индолом, продуктом другой частичной реакции, катализируемой а-субъединицей белка. В результате образуется триптофан  [c.243]


Смотреть страницы где упоминается термин Серин в синтезе триптофана: [c.248]    [c.522]    [c.45]    [c.45]    [c.98]    [c.153]    [c.154]    [c.259]    [c.422]    [c.283]    [c.36]    [c.153]    [c.154]    [c.134]   
Биохимия аминокислот (1961) -- [ c.396 ]




ПОИСК





Смотрите так же термины и статьи:

Серин

Серини

Триптофан



© 2025 chem21.info Реклама на сайте