Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты нарушение обмена

    Избыточная секреция инсулина гиперин-сулинизм. При некоторых видах злокачественных опухолей поджелудочной железы происходит избыточный синтез инсулина В-клетками. У больных при этом наблюдаются следующие симптомы дрожь, слабость и утомляемость, потливость и постоянное чувство голода. Если болезнь затягивается, может происходить нарушение мозговой деятельности. Как влияет избыточная секреция инсулина на обмен углеводов, аминокислот и липидов в печени Почему развиваются описанные симптомы Объясните, почему с течением времени это состояние приводит к нарушениям мозговой деятельности. Термогенез, обусловленный тиреоидными гормонами. Гормоны щитовидной железы участвуют в регуляции скорости основного обмена (базального метаболизма). При введении избытка тироксина в печень животного возрастают скорость потребления О2 и выработка тепла (термогенез), но концентрация АТР в ткани остается на уровне нормы. Были предложены разные объяснения термогенного действия тироксина. Одно из них состоит в том, что избыток тиреоидного гормона вызывает разобщение окислительного фосфорилирования в митохондриях. Каким образом, исходя из этого объяснения, можно понять приведенные выше наблюдения Согласно другому объяснению, термогенез обусловлен повышением скорости использования АТР в стимулируемых тироксином тканях. Считаете ли вы такое объяснение правильным Почему  [c.810]


    Цистинурия. Цистинурия представляет собой нарушение в обмене аминокислот, содержащих серу. Цистинурия встречается гораздо чаще, чем описанные выше аномалии аминокислотного обмена. Она проявляется в увеличенном выделении цистина с мочой если нормально с мочой выделяется мало цистина (1—85 мг в сутки), то при цистинурии количество выделяемого цистина резко возрастает (до 400—1000 мг в сутки). Вследствие плохой растворимости цистин выпадает в моче в виде кристаллических или аморфных осадков, из которых в почечных лоханках и мочевыводящих путях образуются цистиновые камни, достигающие иногда большого веса (50 г). Однако отложения цистина наблюдаются не только в почках, но и в других органах (например, в стенке кишечника, печени, селезенке и лимфатических узлах). Это означает, что цистинурия не является нарушением, связанным только с почками. В наиболее тяжелых случаях цистинурии в моче появляются значительные количества других аминокислот (например, лизина, триптофана, лейцина, тирозина) и даже диаминов (путресцина и кадаверина, стр. 319). Все это указывает на глубокое нарушение аминокислотного обмена в целом. [c.372]

    Цистеин является заменимой аминокислотой может синтезироваться в организме с использованием метионина. Однако при отсутствии метионина или при нарушении превращения метионина в цистеин недостаток этой аминокислоты может привести к нарушению обменных процессов в организме. [c.140]

    Проблема создания высокоэффективных средств для укрепления волос является одной из актуальных в современной косметологии. В состав этих средств обычно входят вещества, усиливающие обменные процессы и кровообращение в коже головы, антимикробные вещества, аминокислоты, микроэлементы, вещества, способствующие восстановлению нарушенной структуры волос. [c.196]

    Существенно переработаны в свете новых данных главы, посвященные обмену веществ. Учитывая все возрастающее значение биохимии для медицины, особое внимание уделено регуляции и патологии обмена углеводов, липидов, белков и аминокислот, включая наследственные нарушения обмена. Обстоятельно изложены многие вопросы, которым не всегда уделялось в курсе биологической химии (особенно в учебниках по биологической химии, переведенных с английского языка) должное внимание. Это касается, в частности, особенностей химического состава и процессов метаболизма в норме и патологии таких специализированных тканей, как кровь, печень, почки, нервная, мышечная и соединительная ткани. [c.11]

    Азотистый обмен связан преимущественно с обменом белков, структурными единицами которых являются аминокислоты. Поэтому далее представлены накопленные к настоящему времени данные о нарушениях обмена отдельных аминокислот при патологии. Повышенный интерес биохимиков, физиологов и клиницистов к проблемам патологии обмена аминокислот объясняется рядом обстоятельств. Во-первых, имеются экспериментальные доказательства и клинические наблюдения о развитии патологического синдрома, в основе которого лежат нарушения нормального пути обмена отдельных аминокислот в организме. Во-вторых, в последнее время аминокислоты и их производные нашли широкое применение в клинической практике в качестве лекарственных средств например, метионин используется для лечения ряда болезней печени, глутаминовая кислота — некоторых поражений мозга, глутамин — кетонурии и т.д. Наконец, ряд аминокислот и продукты их декарбоксилирования (биогенные амины) оказывают регулирующее влияние на многие физиологические функции организма. Следовательно, знание закономерностей обмена отдельных аминокислот в норме и особенно при патологии представляет исключительный научно-теоретический и практический интерес. [c.464]


    Свободный цистин, введенный per os людям, страдающим цистинурией, пол- ностью окисляется до сульфата и не приводит к увеличению содержания цистина в моче. Этот неожиданный, но многократно подтвержденный факт указывает на то, что цистинурия не связана непосредственно с нарушением обмена самого цистина. В то же время оказалось, что введение цистеина или метионина больным цистинурией приводит к значительному увеличению выделения цистина в моче. Это стоит в явном противоречии с общеизвестными фактами легкой превращаемости цистеина в цистин и обратно и взаимосвязи в обмене цистина, цистеина и метионина (стр. 346). Источниками цистина при цистинурии в основном, вероятно, являются цистеин или метионин. По-видимому, причиной цистинурии является нарушение реабсорбции аминокислот в почках. [c.373]

    Во многих случаях удалось показать, что врожденные нарушения обмена связаны с полным или частичным отсутствием определенных ферментативных активностей. Организм либо вообще не способен синтезировать данный фермент, либо он синтезирует его недостаточно, либо образуемый им фермент неактивен вследствие каких-то структурных изменений. Некоторые такие врожденные нарушения касаются обмена аминокислот. Мы рассмотрим три вида нарушений, связанных с обменом фенилаланина и тирозина,— альбинизм, алкаптонурию и фенилкетонурию. [c.453]

    Следует отметить, что окислительный распад фенилаланина и тирозина представляет особый интерес в связи с тем, что многие врожденные нарушения белкового обмена связаны именно с обменом этих аминокислот, например наследственная болезнь фенилкетонурия (фенилпировиноградная олигофрения). Причиной этого заболевания является потеря способности организма синтезировать фермент фенилаланин-4-монооксигеназу, катализирующую пре-врашение фенилаланина в тирозин. Это приводит к накоплению фенилаланина в тканях, а следовательно, и продуктов его трансаминирования фенилпировиноградной и фенилуксусной кислот, оказывающих токсическое действие на организм, и в первую очередь на ЦНС, вызывая расстройство психической деятельности человека. [c.382]

    Данные, которыми мы располагаем в отношении патологических нару шений в обмене отдельных аминокислот, еще недостаточны. Обнаружение некоторых нарушений облегчалось тем, что внешние нх проявления (например, необычная окраска мочи, образование мочевых осадков, почечных камней и т. п ) были легко доступны наблюдению. Обратимся к некоторым патологическим нарушениям аминокислотного обмена. [c.371]

    В книге дано систематизированное изложение обширных и тш,ательно отобранных данных по одному из важнейших разделов биологической химии. На материале свыше 2800 работ освеш,ено современное состояние биохимии аминокислот и их значение в питании и обмене веществ у различных организмов. Приведен большой сравнительно-биохимический материал и кратко изложены основные данные по химии аминокислот. В заключительной, главе рассмотрены некоторые патологические нарушения аминокислотного обмена. [c.4]

    Цистинурия—довояьно распространенное наследственное заболевание. Метаболический дефект выражается в выделении с мочой в 50 раз больше нормы количества 4 аминокислот цистина, лизина, аргинина и орнитина. Уровень цистина в крови обычно не выше нормальных величин. Люди, страдающие цистинурией, вполне здоровы, за исключением тенденции к образованию в организме камней. Эта врожденная аномалия обмена обусловлена полным блокированием реабсорбции цистина и частичным нарушением всасывания трех других аминокислот в почках нарушений в промежуточном обмене этих аминокислот при этом не выявлено. [c.467]

    В настоящей книге автор попытался по возможности полно осветить современные данные о биохимических взаимосвязях и превращениях аминокислот, встречающихся в природе. Книга разбита на пять глав. Гл. I посвящена рассмотрению природных аминокислот и форм, в которых они встречаются описаны обпще свойства аминокислот и, в частности, рассмотрены сте-реохимические соотношения, имеющие глубокое биологическое значение. В гл. II изложены данные о роли аминокислот в питании. В гл. ill и IV отражен современный уровень наших знаний об обмене аминокислот — о процессах их синтеза и распада, о взаимоотношениях аминокислот друг с другом и с прочими метаболитами. Гл. V, посвященная нарушениям обмена аминокислот при патологических состояниях, как бы дополняет изло-/кенные в предыдущих главах сведения о процессах обмена 15 норме . [c.7]

    В этой главе дан обзор некоторых нарушений обмена аминокислот, наблюдаемых при патологических состояниях. Часть из них уже упоминалась в предшествующих главах. Фактически, по-видимому, каждое заболевание связано с изменениями в обмене аминокислот это мнение подтверждается множеством литературных данных. В данной главе рассматриваются лишь те явления, о которых известно достаточно, чтобы сопоставить их с нормальными функциями. Поэтому рассматриваемый в ней материал относительно ограничен в основном он должен служить дополнением к приведенным в предшествующих главах данным о нормальных биохимических и физиологических процессах. [c.463]

    Число описанных аномалий обмена ароматических аминокислот довольно значительно между тем о подобных нарушениях в обмене аминокислот жирного ряда известно немного. Тем не менее нет оснований отрицать возможность существования пороков обмена алифатических аминокислот. Накопление ненормальных продуктов их обмена могло остаться незамеченным ввиду трудности обнаружения таких соединений. Ароматические же производные, напротив, нередко легко доступны идентификации и выделению благодаря отличительным особенностям их ароматических групп. [c.485]


    В растения ТХА проникает через корни и перемещается в стебли, листья и точки роста с транспирационным током. В чувствительных к ТХА растениях наблюдаются после обработки скручивание листьев и стеблей, нарушение роста отдельных органов, прекращается образование воска на листьях. В растениях изменяются процессы дыхания и фотосинтеза, поступление питательных веществ, увеличивается содержание аминокислот и нарушается азотный обмен. [c.369]

    При гепато-лентикулярной дегенерации (болезнь Вильсона) наблюдается генерализованная аминоацидурия, связанная с поражением печени [87—89]. Однако аминоацидурия может появиться до развития признаков заболевания печени существенное повышение уровня аминокислот в крови обычно отсутствует. Имеются также указания на экскрецию пептидов с мочой при этом заболевании [89]. Особый интерес представляют данные о том, что у таких больных нарушен обмен меди [90—95]. Наблюдается отложение меди в чечевицеобразном ядре мозга, печени и роговице с мочой выделяются необычно большие количества меди в виде клешневидных комплексов с пептидами дикарбоновых аминокислот. В нормальной сыворотке крови медь связана с одним из а-глобулинов, церулоплазмином. Концентрация этого белка снижена при болезни Вильсона, однако общее количество меди в сыворотке крови соответствует норме или превышает ее [93, 95]. Между экскрецией аминокислот и экскрецией меди имеется параллелизм — например, повышенное выделение аминокислот, вызванное пищевым рационом с высоким содержанием белка, сопровождается повышенной экскрецией [c.469]

    Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т. е. не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предщественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин — основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, валин участвует в синтезе пантотеновой кислрты, треонин — предшественник витамина B 2 и т. д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.- [c.26]

    Витамин Вг состоит из диметилированного цикла нзраллокса-зина, соединенного с остатком рибозы. Наличие в нем остатка рибозы и дало основание называть его рибофлавином. Витамин Ва необходим всем животным. При авитаминозе Вг нарушается использование аминокислот в обмене веществ, благодаря чему снижается синтез белка. При отсутствии или недостаточности витамина Вг в пище у молодых животных останавливается рост, у домашних птиц снижается яйценоскость, наблюдается паралич и гибель животных. Специфическими признаками авитаминоза Вг являются у человека выпадение волос, а у животных выпадение шерсти на спине, вокруг глаз и ушей, на груди. есьма важным признаком авитаминоза Вг является заболевание глаз развитие конъюнктивитов и кератитов (воспаление роговицы). У людей часто наблюдаются также мышечная слабость, анемия, понижение температуры тела, нарушение частоты пульса, дыхания. Это тял елое заболевание нередко приводит к смерти. [c.173]

    Количественному учету при белковой недостаточности в основном поддаются нарушения, связанные с обменом аминокислот. Одним из наиболее ранних нарушений азотистого обмена при белковой недостаточности является резкое снижение интенсивности процессов дезаминирования, трансаминирования и биосинтеза аминокислот, а также синтеза мочевины в печени. Оказалось, что эти нарушения обусловлены недостаточным синтезом и разрушением белковой части ферментов, катализи- [c.465]

    При белковой недостаточности, помимо нарушений общих процессов аминокислотного обмена, отмечены специфические изменения обмена отдельных аминокислот. Так, нарушения обмена триптофана выражаются как в снижении синтеза никотинамида, так и в накоплении в организме 3-оксиантраниловой и ксантуреновой кислот. Последняя, по некоторым данным, оказывает токсическое действие на 3-клетки панкреатических островков, являясь тем самым одним из патогенетических факторов диабета. Нарушения в обмене гистидина сводятся к снижению активности гистидин-аммиак-лиазы и гистаминазы и, напротив, к повышению активности гистидиндекарбоксилазы. Все это способствует накоплению гистамина в тканях со всеми вытекающими отсюда отрицательными последствиями. При белковой недостаточности обмен метионина практически не нарушен. Все эти данные свидетельствуют о дискоординации ферментных систем обмена аминокислот, что в значительной степени затрудняет терапевтические подходы к устранению последствий белковой недостаточности. [c.466]

    Скорость биосинтеза триацилглицеролов радикально меняется под действием ряда гормонов. Инсулин, например, стимулирует превращение углеводов в триацилглицеро лы. При тяжелых формах диабета в результате нарушения секреции или действия инсулина у больных утрачивается способность не только правильно усваивать глюкозу, но и синтезировать жирные кислоты и триацилглице-ролы из углеводов или аминокислот. Вследствие этого у них увеличивается скорость окисления жиров и образования кетоновых тел в результате происходит потеря веса. На обмен триацилглицеролов оказывает также влияние секреция гипофизарного гормона роста, гормонов коры надпочечников и глюкагона (гл. 25). [c.636]

    Токсическое действие. Яд, преимущественно нейротропного действия. В условиях острого отравления вызывает наркоз и оказывает раздражающее действие. В условиях хронического отравления нарушает углеводную, белковообразовательную, антитоксическую функции печени, вызывает нарушения системы крови, органов дыхания, почек. Нарушает обмен аминокислот в головном мозге, изменяет иммунобиологическую реактивность организма. [c.546]

    БЕЛКОВЫЕ ГИДРОЛИЗАТЫ — нродук ты неполного расщепления белков, получаемые путем кислотного или щелочного гидролиза. Содержат незаменимые аминокислоты, ионы натрия, калия, магния и др. В косметической промышленности используют гидролизаты кератина, желатины, отходов колбасной оболочки, которые различаются между собой составом аминокислот. Так, в гидролизатах кератина несколько больше серосодержащих аминокислот (цистеина, цистина, метионина), и они применяются в основном в средствах для ухода за волосами. Они нормализуют белковый обмен в коже волосистой части головы, который, как правило, нарушен у людей, страдающих преждевременным выпадением волос, усиливают кровоснабжение кожи. Белковые гидролизаты кератина в составе лосьонов для волос способствуют значительному уменьшению салоотделения кожи и поэтому более эффективны при жирной себорее. При сухой себорее более действенными оказываются косметические средства в кремообразной форме. [c.157]

    Производные пиридоксина — фосфопиридоксаль и фосфо-пиридоксамин—(см. стр. 192) являются коферментами ряда ферментов, участвующих в обмене аминокислот (аминотранс-феразы, декарбоксилазы аминокислот, кинуренинаминотране-феразы, цистеиндесульфуразы, фосфорилазы и др.). При недостатке пиридоксина нарушается обмен многих аминокислот, особенно триптофана, метионина, цистина, глютаминовой кислоты и др. Введение пиридоксина оказывает благоприятное действие при нарушении белкового, жирового и углеводного обмена. Суточная потребность в пиридоксине около 2 мг. [c.65]

    Витамин В1 играет очень важную роль в обмене веществ у растений и животных. В виде фосфорного эфира он входит в фермент пируватдекарбоксилазу, катализирующую декарбо-ксилирование пировиноградной кислоты, а также в состав других декарбоксилаз, участвующих, например, в декарбоксилиро-вании аминокислот. Кроме того, соединяясь с липоевой кислотой и двумя остатками фосфорной кислоты, витамин В1 превращается в линотиаминдифосфат (стр. 166), который входит в активную группу пируватдегкдрогеназы, катализирующей окислительное декарбоксилирование пировиноградной и а-кетоглу-таровой кислот. Очевидно, при недостатке или отсутствии витамина В1 реакции декарбоксилирования пировиноградной и некоторых других кислот в организмах подавляются, и происходит накопление этих кислот в тканях. Так как пировиноградная кислота занимает центральное положение в обмене углеводов (стр. 160), недостаток тиамина приводит прежде всего к нарушениям углеводного обмена. Такие нарушения вызывают поражения в первую очередь нервных тканей, и поэтому при недостатке витамина В] наблюдаются воспаление нервных стволов, потеря чувствительности кожи, параличи и другие характерные признаки полиневрита. [c.88]

    Рибофлавин в соединении с фосфорной кислотой входит в состав окислительно-восстановительных, так называемых флавиновых ферментов (стр. 57). За счет рибофлавина образуются, в частности, флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД). С участием флавиновых ферментов происходит окисление аминокислот, органических кислот и других соединений, а также перенос водорода от восстановленных НАД Нг и НАДФ На на цитохромную систему. Поэтому очевидно, что при недостатке витамина Вг нарушения в обмене веществ объясняются прежде всего недостаточной скоростью протекания окислительно-восстановительных процессов в организмах. [c.90]

    Хроническое отравление. Животные. Характерны нарушения фильтрационной функции почек, дистрофические изменения канальцевого эпителия и клубочков (Петросян и др.). При 6-мес. воздействии на крыс вызывал увеличение хромосомных аберраций хроматидного типа (Налбандян, Гижларян). В 5-мес. эксперименте на крысах с ежедневным введением в масляном растворе 200 мг/кг Д. установлено повреждение плазматических мембран эритроцитов и гепатоцитов (Бакалян и др.) нарушение обмена аминокислот повышает содержание в печени и сыворотке крови, изменяет их количественные соотношения (Матевосян) нарушает обмен липидов повышает в сыворотке крови общее содержание липидов, фосфолипидов, неэстерифицированных жирных кислот (Антонян) усиливает перекисное окисление липидов в головном мозге, печени, эритроцитах (Бакалян, Антонян). [c.490]

    Недостаток в витамине Bi вызывает значительные изменения в азотистом обмене, которые выражаются в снижении активности ферментных систем переаминирования, дезаминирования и аминирования, нарушении мочевинообразования и увеличенном выделении аминокислот. [c.373]

    Опыты на крысах показали, что повторные болевые раздражения седалищного ерва электрическим током приводят к увеличению содержания в моче общего азота, азота аминокислот и аммиака. В моче обнаруживаются также значительные количества кетокислот. Это означает, что раздражение периферических нервов вызывает неспецифическое усиление белкового обмена. Но если давать крысам массивные дозы витамина В1, то бол1 вые раздражения не вызывают указанных нарушений в обмене (А. Е. Браунштейн, М. Г. Крицман). В обоих указанных выше случаях нарушения в обмене обусловлены эндогенной недостаточностью витамина Вг, вызванной усиленным расходованием этого витамина при хроническом раздражении или повреждении нервных стволов. [c.410]

    Поступая в организм, В. усваиваются (ассимилируются), образуя более сложные производные (эфирные, амидные, нуклеотидные и др.), к-рые, как правило, соединяются с белком, образуя многочисленные ферменты — типичные биологич. ката.лизаторы, ускоряющие разнообразные реакции синтеза, распада и перестройки веществ в организме. Наряду с ассимиляцией в организме непрерывно идут процессы разложения (диссимиляции) В. с выделением продуктов распада. Если В. не поступают в достаточном количестве с пищей, нарушается деятельность ферментных систем, в к-рых они участвуют, а следовательно, и обмен веществ и развиваются множественные формы расстройств, наблюдаемые при авитаминозах, Эти явления могут развиться и на почве нарушения усвоения и использования В. в оргапизме. Известно св. 100 отдельных ферментов, в состав к-рых входят В. и еще большее число катализируемых ими реакций. В. (гл. обр. водорастворимые) являются участниками процессов распада пищевых веществ и освобождения заключенной в них энергии (витамины В , Вг, РР и др.). В неменьшей степени они участвуют в процессах биосинтеза. Это касается синтеза аминокислот и белка (витамин Ве, В з), синтеза жирных к-т и обмена жиров (пантотеновая к-та), синтеза пуриновых и пиримидиновых оснований и обмена нуклеиновых к-т (фолиевая кислота, В 2), образования многих физиологически важных соединений — ацетилхолина, глутатиона, стероидов и др. Менее ясен каталитич. способ действия жирорастворимых В., ио и здесь несомненно их участие в построении структур организма, напр, в образовании костей (витамин П), развитии покровных тканей и образовании такою важного пигмента, как зрительный пурпур (витамин А), нормальном развитии эмбриона (витамин Е) и др. Как правило, В. не токсичны, но нек-рые из них при дозировках, превышающих в неск. сот раз рекомендуемые нормы, вызывают расстройства, называемые г и н е р в и т а м и н о 3 а м и. таким относятся витамины А и О. [c.299]

    Экскрецию гомогентизиновой кислоты в опытах на животных вызывали также применением рационов, недостаточных по серу-содержащим аминокислотам. Наблюдаемое при этом выделение гомогентизиновой и п-оксифенилпировиноградной кислот устранялось введением цистеина [132, 133]. Отмеченное в этих исследованиях, а также в опытах со скорбутными морскими свинками выделение гомогентизиновой кислоты может зависеть как от дискоординации в обмене аминокислот, так и от нарушения функции почек [132]. [c.473]

    Присутствие различных продуктов обмена триптофана в моче больных при некоторых заболеваниях может стоять в прямой связи со специфическим патологическим процессом однако могут быть выдвинуты и другие объяснения. Например, выделение таких метаболитов может представлять собой вторичное явление, зависящее от изменения функции почек или от нарушения нормальных соотношений между различными аминокислотами в промежуточном обмене веществ. Возможно также, что полученные данные в какой-то степени связаны с повышенной интенсивностью распада триптофана. Обнаружено, что активность триптофанпероксидазы в печени может подвергаться быстрым и резким адаптивным изменениям и зависит от влияния определенных эндокринных воздействий. В свете этих данных возможно, что выделение продуктов распада триптофана с мочой является следствием повышенной интенсивности процесса окисления триптофана в кинуренин. В общем обмен триптофана может, по-видимому, служить чувствительным показателем мно- [c.484]

    Окислительный обмен фенилаланина и тирозина особенно интересен в двух отношениях во-первых, многие заболевания, возникающие в результате вро депных нарушений обмена , связаны именно с этими превра-щепиямп и, во-вторых, ферменты, участвующие в обмене этих двух аминокислот, нуждаются иногда в совершенно необычных коферментах. Основные пути окислительного распада фенилаланина и тирозина показаны на фиг. 144. [c.451]

    Исследованиями Ф. А. Горюновой и Е. А. Полугар (1965, 1967) показано, что симазин и атразин в дозе 1—2 кг/га неблагоприятна влияют на физиологические процессы в растениях картофеля, овса, бобов, клевера. В урожае указанных культур существенно снижается содержание белковых форм азота, нарушается углеводный обмен, уменьшается содержание сахарозы. В клевере и кукурузе снижается содержание аминокислот, главнььм образом незаменимых. Степень нарушения обмена веществ определяется количеством поступившего в растения гербицида. Показано, что ряд сельскохозяйственных культур обладают способностью аккумулировать симазин и атразин в органах растений. Уровень гербицидного действия в значительной степени зависит от почвенно-климатических условий, от фона питания и чувствительности растений. При размещении сельскохозяйственных культур в севообороте необходимо учитывать длительное последействие гербицидов (симазина, атра-зина). [c.161]


Смотреть страницы где упоминается термин Аминокислоты нарушение обмена: [c.88]    [c.468]    [c.253]    [c.342]    [c.563]    [c.592]    [c.410]    [c.435]    [c.434]    [c.458]   
Биохимия (2004) -- [ c.409 ]




ПОИСК







© 2025 chem21.info Реклама на сайте