Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кодоны не кодирующие аминокислот

    Генетический код — это определенная последовательность азотистых оснований нуклеотидов данного гена, соответствующая последовательности аминокислот в белке. Каждая аминокислота кодируется тремя азотистыми основаниями, расположенными в определенной последовательности — триплетом, который называется кодоном. Большинство аминокислот, кроме метионина и триптофана, может кодироваться несколькими кодонами. Кодоны 20 аминокислот представлены в табл. 17. Указанные кодоны различаются только третьим азотистым основанием. Например, кодирование аминокислоты аланина осуществляется четырьмя триплетами нуклеотидов — ГЦУ, ГЦЦ, ГЦА, ГЦГ. Главную роль при узнавании аминокислоты играют первые два основания. Не все кодоны кодируют аминокислоты. Некоторые из них служат "стартовыми" сигналами, запускающими синтез полипептидной цепи белка, как, например, АУГ — кодон метионина. Другие кодоны, например [c.220]


    ОТКРЫТАЯ РАМКА СЧИТЫВАНИЯ. Состоит из ряда триплетов, кодирующих аминокислоты не содержит каких-либо терминирующих кодонов эта последовательность потенциально может транслироваться в белок. [c.524]

    Г.К. называют вырожденным, поскольку 61 кодон кодирует всего 20 аминокислот. Поэтому почти каждой аминокислоте соответствует более чем один кодон. Вырожден-ность Г. к. неравномерна для аргинина, серина и лейцина она шестикратна (т.е. для каждой из этих аминокислот имеется по шесть кодонов), тогда как для мн. др. аминокислот (тирозина, гистидина, фенилаланина и др.) лишь двукратна. Две аминокислоты (метионин н триптофан) представлены единств, кодонами. Кодоны-синонимы почти всегда отличаются друг от друга по последнему из трех нуклеотидов, тогда как первые два совпадают. Т. обр., код аминокислоты определяется в осн. первыми двумя буквами . Вырожденность Г. к. имеет важное значение для повышения устойчивости генетич. информации. [c.519]

    В ДНК в форме специфической последовательности Т, А, С и G закодирована аминокислотная последовательность всех клеточных белков. Кодирование осуществляется триплетами из тимина, аденина, цитозина и гуанина. Три основания (кодон) кодируют одну аминокислоту. Тем самым ДНК действует как матрица для синтеза белков в клетке. Определенные участки ДНК (гены) ответственны за то или иное действие в клетке. Каждая клетка содержит полный набор информации для строительства своих белков, ферментов. [c.719]

    Имеют ли какое-нибудь значение кодоны, которые как будто не кодируют аминокислоты ( бессмысленные кодоны ), неясно. Таких кодонов очень немного (1—3), но можно уверенно сказать, что в действительности они не лишены смысла и лишь требуют дальнейшего исследования. [c.82]

    Из 64 возможных триплетов для кодирования аминокислот достаточно, собственно говоря, всего лишь 20 — по одному на каждую из 20 различных аминокислот, находящихся в белках. Для чего же нужны лишние 44 триплета Некоторые из них, вероятно, служат знаками препинания другие, быть может, являются бессмысленными , т. е. не кодируют аминокислот и поэтому не должны входить в последовательности кодонов, иначе в белке образовался бы пропуск, пустое место. Однако скорее всего дело обстоит по-иному просто код является вырожденным. Это означает, что каждая аминокислота может кодироваться не одним, а несколькими кодонами (читатель уже, конечно, замети.т это, когда мы рассматривали пример неправильного считывания триплетов, причем оказалось, что лейцин кодируется не только ЦУЦ, но и ЦУУ). В настоящее время идентифицированы в качестве кодонов 61 или 63) триплета, остальные 3 (или 1) остаются пока лишними . Табл. 1 показывает, в каком состоянии находится сейчас изучение триплетов РНК. [c.51]

    Кодон — участок, в данном случае участок и-РНК, состоящий из трех нуклеотидов, кодирующих аминокислоту, которая войдет в состав белка. Антикодон — три других комплементарных нуклеотида, входящие в данном случае в состав т-РНК (см. далее). [c.689]


    Но результаты оказались обескураживающими ген, введенный в растение, не работал . Точнее, работал , но плохо уровень его экспрессии не защищал от вредителя. Дело в том, что Bt, в отличие от агробактерий, не приспосабливала свои гены для работы в растении, а значит, эти гены не могли эффективно читаться им. Лишь через годы ученые расшифровали бактериальный ген Bt и заменили его кодоны (триплеты нуклеотидов, кодирующие аминокислоты) аналогичными растительными . Так как одна и та же аминокислота может кодироваться разными кодонами, новый ген, хотя и отличался по составу кодонов от исходного, функционально был ему идентичен. Когда такой ген ввели в растения, он прекрасно обеспечил устойчивость к вредителю. Впрочем, за словами ген ввели в растения стояли десятки и даже сотни экспериментов, один из которых и дал нужный результат. [c.102]

    Кодон (триплет) — единица генетического кода, тройка соседних нуклеотидов в молекулах ДНК или РНК, кодирующая аминокислоту либо завершение синтеза белка. [c.189]

    Название аминокислоты Кодирующие кодоны Название аминокислоты Кодирующие кодоны [c.366]

    Шестьдесят один кодон соответствует аминокислотам, и все аминокислоты, за исключением триптофана и метионина, кодируются несколькими кодонами. Кодоны-синонимы обычно образуют группы, в которых два первых основания в кодоне являются общими, а третье-варьирует. Три кодона вызывают терминацию (ТЕРМ). Порядок оснований в кодоне записан, как обычно, в направлении от 5 -конца к З -концу. [c.60]

    Миссенс-мутация (Missense mutation) Мутация, в результате которой кодон, кодирующий какую-либо аминокислоту, изменяется с образованием кодона, кодирующего другую аминокислоту. [c.553]

    Только 61 триплет кодирует аминокислоты. Остальные три триплета являются терминирующими кодонами, функция которых-прекращать белковый синтез. Им даны случайные названия, отражающие историю их открытия. Триплет UAG называется амбер-ко доном UAA-охра-кодоном и иногда называемый опал-кодо- [c.85]

    В результате использования описанных выше методов удалось полностью расшифровать генетический код (см. табл. 12.1) показано, что 61 из 64 возможных триплетов кодируют какую-либо аминокислоту. Правильность соотнесения кодонов и аминокислот была подтверждена при анализе аминокислотных замен в мутантных белках оболочки ВТМ и гемоглобинов человека, основанном на представлении о том, что каждая точечная мутация связана с изменением одного нуклеотида в триплете. Пример такого сравнительного анализа для мутантных человеческих р-глобиновых цепей приведен на рис. 12.4. [c.78]

    ГЕНЕТИЧЕСКИЙ КОД, способ. аписи информации о последовательности аминокислот в белках в виде последовательности оснований в нуклешюпой к-те. Осн. св-ва Г. к. тршигпюсть — каждая аминокислота определяется последовательностью трех основаннй (кодоном) вырожден-П0С11, — из 64 возможных кодонов 61 кодирует 20 аминокислот, так что каждой аминокислоте соответствует от 1 до 6 кодонов универсальность — единый код для всех организмов. Кодоны, кодирующие аминокислоты, можно определить из таблицы  [c.125]

    Информационная РЖ(мРНК, иРНК). ММ 25 000-1 ООО ООО Да. Состоит из 75—300 нуклеотидов, синтезируется в ядре из пре-мРНК. Кодовым элементом является триплет нуклеотидов (кодон), кодирующий аминокислоту. Во вторичной структуре — изогнутая цепь, в третичной — полинуклеотидная цепь связана (намотана) с транспортным белком информофером  [c.294]

    Типичный пример псевдогена-псевдоген кролика /(32 с обычной организацией экзонов и интронов, по строению близкий к функционально активному гену (31. Но в кодоне 20 псевдогена /(32 имеется делеция одной пары нуклеотидных оснований, вызывающая сдвиг рамки считывания, из-за которого трансляция терминируется вскоре после ее начала. В результате точковых мутаций оказались измененными несколько расположенных правее кодонов, кодирующих аминокислоты, имеющиеся во всех (3-глобинах. Ни один из двух интронов псевдогена /(32 не сохранил пограничных последовательностей, удовлетворяющих правилу от—АО. Поэтому, вероятно, интроны не могут быть удалены при сплайсинге, даже если бы ген и транскрибировался. Однако транскриптов, соответствующих /(32, не обнаружено, возможно, вследствие изменений в его 5 -фланкирующей области. [c.278]

    Буквы А, Г, У, Ц в таблице обозначают основания РНК — соотв, аденин, гуанин, урацил, цитозин буквенные обозначения аминокислот (напр., фен, сер, лей) см. в ст. а-Амино-кислиты. Амбер , - охра , <опал — обозначения <бес-смыс,тенных кодонов, к-рые не кодируют аминокислоты, а служат сигналами окончания синтеза полипептидной цеии. Первое основание кодона обозначается буквами в вертикальном ряду слева, второе — в горизонтальном ряду сверху, третье — в вертикальном ряду справа. Реализация ] к, происходит в два этапа транскрипции н трансляции,. а ра<шифровку генетич. кода X. Г. Коране и М. У. Ни-рен( ср1у и 1 168 присуждена Нобелевская премия. [c.125]

    На рис. 3 дан полный кодовый словарь. Из 64 триплетов, получивших название кодонов, 61 являются значащими (смысловыми) в том смысле, что кодируют аминокислоты. Только 3 кодона —UAG ( янтарь ), UAА ( охра ) и UGA ( опал ) — не кодируют никакой аминокислоты и потому иногда называются бессмысленными . Роль бессмысленных триплетов в трансляции очень важна, так как в мРНК они служат сигналом терминации синтеза полипептидной цепи белка в настоящее время их обычно называют терминаторными кодонами. [c.15]

    Генетический код (Geneti ode) Система записи генетической информации в виде последовательности нуклеотидов, в которой каждые три нуклеотида, составляющие кодон, кодируют одну аминокислоту. Состоит из 64 кодонов, кодирующих все 20 аминокислот и три терминирующих кодона. [c.546]


    Информация, заложенная в ДНК и РНК, реализуется в процессе синтеза белка. Механизмы передачи информации от ДНК на РНК понятны и очевидны, так как цепь нуклеотидов характерна для обеих структур, а матричный синтез предусматривает полную идентичность их последовательностей. Но каким же образом передается информация от РНК, содержащей всего четыре нуклеотида, на белок, содержащий 20 различных аминоьсислот Если бы каждый нуклеотид передавал информацию на синтез одной аминокислоты, то всего кодировалось бы 4 аминокислоты. Не может код состоять из двух нуклеотидов, так как в этом случае можно было бы охватить не более 16 аминокислот (4 = 16). Работами М. Ниренберга и соавторов было установлено, что для кодирования одной аминокислоты требуется не менее трех последовательно расположенных нуклеотидов, называемых триплетами или кодонами. При этом между отдельными кодонами нет промежутков, и информация записана слитно, без знаков препинания. Число сочетаний 4 дает основание полагать, что 20 аминокислот кодируются 64 кодонами. Экспериментально установлено, что таких кодонов меньше, всего 61. Оставшиеся три кодона не несут в себе информации, однако два из них используются в качестве сигналов терминации. Выявлена также интересная особенность взаимодействия кодона с антикодоном. Оказалось, что первое и второе азотистые основания кодона образуют более прочные связи с комплементарными основаниями антикодона. Что же касается третьего основания, то эта связь менее прочная, более того, основание кодона может спариваться с другим, не комплементарным основанием антикодона. Этот феномен называют механизмом неоднозначного соответствия или качания. В соответствии с этим урацил антикодона может взаимодействовать не только с аденином, но и с гуанином кодона. Гуанин антикодона способен связываться не только с цитозином, но и с урацилом кодона. Это указывает на возможность нескольких кодонов кодировать одну и ту же аминокислоту. И действительно, было установлено, что ряд аминокислот кодируется двумя и более антикодонами (табл. 29.1). Из таблицы видно, что только две аминокислоты — метионин и триптофан — кодируются при помощи одного кодона. Число кодонов для остальных аминокислот варьирует от двух (для аргинина, цистеина и др.) до шести (для лейцина и серина). Тот факт, что одной и той же аминокислоте соответствует несколько кодонов, называется вырожденностью [c.462]

    Наконец рибосома присоединила последнюю аминокислоту, полностью закончив синтез полипептида, кодируемого мРНК. О терминации полипептида сигнализирует один из трех терминирующих кодонов мРНК, расположенный непосредственно за кодоном последней аминокислоты. Терминирующие триплеты UAA, UAG и UGA не кодируют никакую аминокислоту. Их называют бессмысленными триплетами (нонсенс-триплетами). Первоначально они были обнаружены при исследовании изменения одного-единственного нуклеотида в некоторых кодонах, соответствующих определенным аминокислотам. Это изменение приводило к возникновению нонсенс-мутанитов Е.соИ, для которых была характерна преждевременная терминация синтеза полипептидных цепей. С помощью таких нонсенс-мутантов, по- [c.941]

    Кодоны для аминокислот представляют собой специфические тройки нуклеотидов (триплеты). Нуклеотидная последовательность в кодонах была установлена в результате экспериментов с использованием синтетических мРНК известного нуклеотидного состава и известной нуклеотидной последовательности. В аминокислотном коде почти каждой аминокислоте соответствует несколько кодовых слов. Третья буква каждого кодона гораздо менее специфична, чем первые две про нее говорят, что она качается . Стандартные слова генетического кода, вероятно, универсальны для всех организмов, правда в митохондриях человека найдены кодоны, значение которых отличается от универсального. Инициирующая аминокислота N-формилметионин кодируется кодоном AUG, причем для ее взаимодействия с этим кодоном необходимо наличие с 5 -стороны от AUG инициирующего сигнала с повышенным содержанием А и G. Триплеты UAA, UGA и UAG не кодируют никакую аминокислоту, они служат сигналами терминации полипептидной цепи. В некоторых вирусных ДНК одна и та же нуклеотидная последовательность может кодировать два разньсх [c.961]

    Поскольку книга Дэвидсона вышла в свет в 1965 г., неудивительно, что в ней не отражены в полной мере некоторые существенные достижения в области нуклеиновых кислот, которыми были ознаменованы последние 1 /г—2 года. В частности, за это время была полностью расшифрована первичная структура пяти растворимых РНК, причем первичная структура одной из них, а именно валиновой РНК, была полностью выяснена у нас А. А. Баевым с сотрудниками. За это же время Крик в ряде статей опубликовал данные о том, что по крайней мере 62 из 64 кодонов кодируют хотя бы одну из 20 обычных аминокислот, входящих в состав белков. Кроме того, им выдвинута новая гипотеза о механизме взаимодействия 5-РНК, несущих соответствующие аминокислоты, с кодонами информационной или матричной РНК (так называемая у обл-гипотеза ). [c.5]

    Что же такое ГПГ Напомним, что вся информация об организме — от бактерии до человека — хранится (точнее, кодируется) в его ДНК. Знаменитая двойная спираль молекулы ДНК состоит всего из 4 оснований А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). Две нити ДНК связаны углеводородными мостиками , соединяющими между собой (по принципу ключ — замок ) соответствующие друг другу по химическому строению концы оснований (А — Т и Г — Ц). Допустим, нить ДНК представлена последовательностью ТТТАТТГТТГЦТ. Разобьем ее на слова из трех букв ТТТ АТТ ГТТ ГЦТ — это и есть генетический код, в котором каждое слово (триплет, или кодон) кодирует определенную аминокислоту. Так, выбранная последовательность кодирует короткий пептид (небольшой белок) из четырех аминокислот фенилаланина, изолейцина, валина и аланина. Когда говорят об экспрессии генов (реализации в клетке закодированной в ДНК информации), подразумевают, что кодоны считываются специальными ферментами клетки с образованием промежуточной информационной молекулы и-РНК (этап транскрипции), считывание триплетов которой (этап трансляции) происходит в рибосомах с образованием белков. [c.81]

    Завершается синтез полипептидной цепи при поступлении в туннель особого кодона, который не кодирует аминокислоты и к которому не может присоединиться ни одна тРНК. Такие кодоны называются терминирующими, или нонсенс-кодонами. Особенно велика их роль в синтезе белков, молекула которых состоит из нескольких полипептидов. [c.72]

    Так, представилась возможность использовать для расшифровки генетического кода прямые химические методы, поскольку было очевидно, что состав кодонов других аминокислот можно выяснить, анализируя полипептиды, образующиеся на других искусственно синтезированных молекулах РНК. Так, вскоре было показано, что полицитидиловая кислота (поли-Ц) стимулирует синтез полипролина, полиадениловая кислота (по-ли-А) — синтез полилизина и, следовательно, триплеты ЦЦЦ и ААА кодируют соответственно пролин и лизин. (Ввиду некоторых структурных особенностей полигуаниловой кислоты этот полинуклеотид не мог быть проверен в данной системе, однако в последующих работах было показано, что ГГГ кодирует глицин.) [c.437]

    Свойства генетического кода были исследованы впервые Ф. Криком и его сотрудниками, которые изучали белоксинтезирующие системы на мутантах бактериофага Т4. Ими было показано, что генетический код триплетен (т. е. одну аминокислоту кодирует триплет нуклеотидов). Затем последовали эксперименты, в ходе которых были разработаны методы определения состава кодонов (М. Ниренберг и И. Маттеи, 1961 г.). Так было выяснено, что триплет нуклеотидов УУУ (У — урацил) кодирует аминокислоту фенилаланин, а триплет ЦЦЦ (Ц — цитозин) — пролин. [c.365]

    Генетический код однозначен, т. е. каждый кодон кодирует только одну аминокислоту. Исключение составляют только инициаторные кодоны АУГ и ГУ Г. В начале трансляции они кодируют включение фор-милметионина, а находясь внутри цепи, АУГ кодирует метионин, а ГУГ — валин. [c.366]

    Различают крупные хромосомные перестройки (выпадение, перемещение на новое место или инверсия иа 180° значительных фрагментов хромосом) и точечные мутации. Именно последние представляют наибольший интерес для фотобиологии. При точечных мутациях происходит замена одного нз оснований в ДНК на другое, выпадение (делеция) или вставка одного нз нуклеотидных остатков. Замена пуринового основания на пуриновое и пиримидинового — на пиримидиновое называется транзицией, а пуринового на пиримидиновое или наоборот — трансверзией. Следствием и транзиций и трансверзий может быть 1) образование бессмысленных кодонов, ие кодирующих аминокислоты УАГ (амбер-мутация), УАА (охра-мутация) и У ГА. Эти три типа мутаций называются нонсенс-мутациями и приводят к прерыванию синтеза либо и-РНК, либо белка 2) изменение смысла кодона, приводящего к включению в белок неверной аминокислоты (м иссенс-мутации). [c.305]

    Три из 64 кодонов не кодируют каких-либо аминокислот. Они были названы нонсенс (nonsense)-кодонамн. По крайней мере два из них выполняют функцию сигналов терминации. Они определяют, где должен остановиться синтез полипептидной цепи. Функциональное значение остальных триплетов— кодирование 20 аминокислот. Важнейшее свойство генетического кода—его вырожденность . Это означает, что несколько кодонов кодируют одну и ту же аминокислоту. Алализ таблицы генетического кода (табл. 40.1) приводит к выводу о том, что все 64 кодона можно подразделить на 16 семейств. В одно семейство объединены кодоны, имеющие одинаковые нуклеиновые основания в первом и втором положениях. В таблице каждое семейство занимает одну вертикальную колонку между горизонтальными линиями. Например, кодон N, где N может быть [c.95]


Смотреть страницы где упоминается термин Кодоны не кодирующие аминокислот: [c.854]    [c.204]    [c.518]    [c.624]    [c.19]    [c.200]    [c.111]    [c.525]    [c.261]    [c.558]    [c.666]    [c.200]    [c.378]    [c.419]    [c.420]    [c.83]   
Биохимия Т.3 Изд.2 (1985) -- [ c.75 ]




ПОИСК







© 2025 chem21.info Реклама на сайте