Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЕРЕДАЧИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ

    МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЕРЕДАЧИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ [c.849]

    Для объяснения механизма множественного действия гормонов на организм предложено несколько теорий. Хотя разные стероидные гормоны могут действовать по-разному, их удобно тем не менее рассматривать как класс веществ с близкими свойствами. Было высказано предположение, что 1) гормоны действуют на уровне транспорта веществ к тканям-мишеням 2) гормоны взаимодействуют с белками, такими, как ферменты, лимитирующие скорость тех или иных процессов, регулируя тем самым физиологические функции этих б .иков 3) гормоны контролируют передачу генетической информации, хранящейся в хромосомах. Третья теория, иллюстрируемая более детально на примере действия гормонов линьки насекомых, по-видимому, наилучшим образом соответствует наблюдаемым фактам. Однако многое еще предстоит выяснить, прежде чем мы сможем составить ясное представление о молекулярных механизмах гормональной активности особендо это справедливо в том, что касается прогестерона. [c.71]


    Как известно, основная биологическая роль ДНК сводится к хранению и передаче наследственной информации. Поэтому основное требование, которое природа предъявила к ДНК, заключается в стабильности ее молекулярной структуры в физиологических условиях, обеспечивающей сохранность генетической информации. Несомненно, это возможно при определенной пространственной организации молекул ДНК, исследование особенностей которой позволяет наиболее четко представлять механизмы функционирования нуклеиновых кислот in vivo. [c.271]

    С точки зрения молекулярной биологии воздействие антибиотиков и всех вообще токсинов на живую клетку сводится к трем основным схемам во-первых, нарушение нормальной работы ферментов, во-вторых, нарушение процессов передачи генетической информации и, в-третьих, нарушение нормального состояния цитоплазматических мембран и клеточной оболочки. Конечно, такая классификация достаточно условна [76], но она помогает выявить сходство и различие в механизмах действия различных антибиотиков. [c.192]

    До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации. На первом этапе-этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация. На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК). На третьем этапе-этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине 1996 г. [c.478]

    Этот период развития современной биологии, завершившийся полной расшифровкой генетического кода, привел к пониманию общего механизма передачи наследственной информации и изменения наследуемых свойств можно ска-зать что создана феноменологическая картина молекулярного механизма передачи генетической информации. [c.3]


    Многие аспекты обмена нуклеиновых кислот имеют самое непосредственное отношение к важнейшим проблемам современной молекулярной биологии и биохимии. В числе этих проблем — расшифровка молекулярных механизмов, определяющих синтез различных макромолекулярных структур, изучение законов передачи генетической информации, проблема клеточной дифференцировки и др. [c.422]

    Эта книга посвящена молекулярным структурам и механизмам, лежащим в основе передачи и использования генетической информации сложными организмами. Представляя ее, мы надеемся, что у читателя возникнет чувство предвкушения того удовольствия, которое он получит, знакомясь с открытиями в области рекомбинантных ДНК. [c.6]

    Основа молекулярной генетики — молекула дезоксирибонуклеиновой кислоты (ДНК). Генетическая информация зашифрована в молекуле ДНК с помощью кода, который мы скромно называем универсальным. Это означает, что если известно, как происходит передача наследственной информации в одной клетке, то известен также молекулярный механизм этой передачи в любых других клетках, причем не только того же органа или организма, но и вообще у всех живых существ. Имеются, конечно, различия в регуляции наследственности у прокариотов и эукариотов, но общая ситуация прекрасно определена Моно Что применимо к Е. oli, применимо и к слону . Наследствен-кость — это биохимия ДНК [c.7]

    В настоящее время строение ДНК, генетический код и механизм рибосомального синтеза пептидов детально изучены. Следует только дополнительно подчеркнуть роль меж-цепной и межмолекулярной комплементарности нуклеиновых кислот, которая обеспечивает точную передачу молекулярной информации и имеет фундаментальное значение для репродукции живых систем. [c.140]

    Одним из краеугольных камней современной молекулярной биологии является гипотеза Уотсона и Крика выдвинутая ими в 1953 г. Эта гипотеза обобщила имевшиеся к гому времени данные о структуре и функциях ДНК и стимулировала развитие качественно новых подходов к изучению химии, физики и функциональной роли нуклеиновых кислот. В частности, вытекающий из гипотезы Уотсона и Крика принцип комплементарности был использован для объяснения механизмов передачи генетической информации как при воспроизведении генов, так и при биосинтезе белка. В дальнейшем эти механизмы нашли экспериментальное [c.249]

    Проблемы механизмов переноса, перераспределения и экспрессии генетических признаков, долгое время не находившие решения, с начала 50-х годов перешли на молекулярный и химический уровни. Как реплицируются и рекомбинируют молекулы ДНК Каким образом они сохраняются в последующих поколениях Каким способом информация, закодированная в ДНК, обеспечивает образование фенотипических продуктов-белков Как регулируется считывание информации, закодированной в ДНК, в процессе роста клеток или развития организма и при других физиологических состояниях Как нарушаются эти процессы при заболеваниях Эти и еще многие другие вопросы стояли в центре молекулярно-генетических исследований в течение последних 35 лет. Бурный прогресс в первые 20 из них был достигнут благодаря использованию систем прокариот и связан с цпен-тификацией молекулярных структур, участвующих в процессах хранения, поддержания, передачи и использования генетической информации. [c.30]

    В настоящее время успешно расшифрованы очень сложные структуры белков и нуклеиновых кислот. Последние играют важную роль в передаче наследственных признаков и воспроизведении ба1Ков. Например, удалось выяснить точное строение, а недавно даже полностью осуществить синтез сложного белка — инсулина, недостаток которого, как известно, приводит к сахарной болезни. Выяснение точного расположения органических оснований в гигантских молекулах дезоксирибонуклеиновой кислоты (ДНК) дает ключ к познанию механизма передачи генетической информации. Таким образом, стирается граница между органической химией и биологией клетки. Возникшая на стыке наук молекулярная биология в будущем, несомненно, позволит сознательно изменять наследственные признаки биологических объектов. [c.122]

    Дальнейшее развитие биологии и медицины почти невозможно без применения методологических принципов современной биологической химии. Установление способов хранения и передачи генетической информации и принципов структурной организации белков и нуклеиновых кислот, расшифровка механизмов биосинтеза этих полимерных молекул, а также молекулярных механизмов трансформации энергии в живых системах, установление роли биомембран и субклеточных структур, несомненно, способствуют более глубокому проникновению в сокровенные тайны жизни и выяснению связи между структурой индивидуальных химических компонентов живой материи и их биологическими функциями. Овладение этими закономерностями и основополагающими принципами биологической химии не только способствует формированию у будущего врача диалектикоматериалистического понимания процессов жизни, но и дает ему новые, ранее недоступные возможности активного вмешательства в патологические процессы. Этими обстоятельствами диктуется необходимость изучения биологической химии студентами медицинских институтов. [c.9]


    В осуществлении каждого из указанных процесов специфическое участие принимает ряд белков и нуклеиновых кислот, хотя конкретные молекулярные механизмы этих превращений еще не полностью раскрыты. Все три указанных процесса имеют важное значение в формировании зрелой молекулы мРНК. Однако наибольший интерес исследователи проявляют к выяснению молекулярного механизма сплайсинга, который должен обеспечить, во-первых, постепенное и высокоточное вырезание интронов из первичного транскрипта и, во-вторых, сшивание образующихся фрагментов-экзонов- конец в конец . Любые отклонения или смещения границ в процессе вырезания интронов и сшивания экзонов даже на один нуклеотид могут привести не только к глубокому искажению смысла в кодирующих последовательностях, но и к нарушению передачи генетической информации и развитию патологии. [c.490]

    Прокариотические клетки представляют исключительную ценность для исследований в области биохимии и молекулярной биологии, так как они несложны по своей структуре, их можно легко и быстро вьфащивать в больших количествах, а механизмы репродукции и передачи генетической информации у них относительно просты. В оптимальных условиях при 37°С в простой питательной среде, содержащей глюкозу, соли аммония и неорганические веще- [c.30]

    Б последние два десятилетия с помощью молекулярной биологии выявлены узловые звенья регуляции синтеза белка, определены функции ДНК и РНК, интенсивно изучаются клеточные орга-неллы, раскрыты принципы передачи генетической информации и т. д. Эти значительные успехи вот-вот должны были привести к окончательному раскрытию сущности жизненных явлений. Однако оказалось, что молекулярная биология далеко не исчерпывает исследуемую область, а лишь поставляет информацию, необходимую для обсуждения новых, более широких проблем [Ичас, 1971, с. 298]. Несомненна важность элементарных процессов, происходящих в клетке, однако не менее принципиален вопрос об их взаимосвязи в пространстве и времени по-прежнему неясен вопрос о том, как и что объединяет клетки в единую функциональную систему, каковы механизмы, обеспечивающие взаимодействие клеток. [c.5]

    Книга итальянского ученого профессора Пьетро Воль-пе посвящена рассмотрению биохимии клеточного цикла. В доступной форме автор излагает общие вопросы биологии нормальной и раковой клетки, молекулярной биологии последовательных этапов передачи генетической информации (репликации, транскрипции и трансляции). Все эти процессы автор анализирует по стадиям клеточного цикла, рассматривая их в системе временных орбит . Особое внимание П. Вольпе уделяет проблеме модификации ДНК и ее возможной роли в регуляции транскрипции, а также разбору механизмов вирусной инфекции и химиотерапии рака. Небольшой объем книги не позволил охватить все работы по рассматриваемым проблемам в ней представлены и интересно обсуждаются результаты, полученные в основном в лаборатории самого. автора. В книге излагаются также оригинальные молекулярнобиологические концепции и гипотезы П. Вольпе относительно регуляции процессов передачи генетической информации в клеточном цикле, механизма вирусной инфекции и возможных подходов к химиотерапии рака. [c.5]


Смотреть страницы где упоминается термин МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЕРЕДАЧИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ: [c.94]    [c.143]    [c.28]    [c.9]    [c.115]   
Смотреть главы в:

Основы биохимии Т 1,2,3 -> МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЕРЕДАЧИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ




ПОИСК





Смотрите так же термины и статьи:

Информация



© 2025 chem21.info Реклама на сайте