Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий определение в плутонии

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]


    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Железо (П). Ион Fe , обычно генерируемый восстановлением Fe + на платиновом катоде в сернокислых растворах, используется в качестве титранта при определении различных окислителей, главным образом неорганических. Известны методы определения церия [110, 350, 510, 511], урана [292, 512], плутония [202, 513, 5141, ванадия [110, 515—518], хрома [110, 137, 151,, 516, 517, 519, 5201, теллура [521], марганца [110, 366, 517, 520, 522, 5231, хлора [330, 523, 524], перйодатов [525], щавелевой кислоты и 2-нафтиламина [350]. [c.62]

    В качестве примера ниже приводятся ссылки на работы, посвященные титриметрическим методам определения азота в нитридах бора и кремния [202, 323, 1146, 1150], нитридах урана и плутония [826,1063, 1064], нитридах титана [4], ванадия [539], циркония и ниобия [295], алюминия [9] газометрическим методам определения азота в нитридах урана [1066, 1343], нитридах ниобия и тантала [916], нитридах кремния, титана и ванадия [411], в карбидах кремния [619], карбидах и карбонитридах Ti, Zr, V, Nb, Та, Сг, Мо, W, Мп, Fe, U [1231], в окислах, нитридах и гидридах металлов [1143] газохроматографическим методам определения азота в тугоплавких материалах — карбидах, нитридах, окислах, фосфидах и силицидах [857, 1056] спектральному и спектрально-изотопному методу определения азота в окислах, карбидах и нитридах W, Nb, Ti, Si [105, 306] и др. [c.242]

    Метод заключается в обратном титровании избытка ЭДТА, не связанного в комплекс с Pu(III) состава 1 1, стандартным раствором нитрата тория при pH 2,5 с применением смешанного индикатора, состоящего из ал11зарина S и метиленового голубого. Ошибки, меньшие 1%. получены при определении около 10 мг плутония. Определению мешают элементы, образующие прочные комплексы с ЭДТА при pH 2,5, а именно железо, титан, торий и, вероятно, галлий и ванадий. [c.205]

    Экстракцию Mo(VI) из хлоридных растворов довольно широко используют для решения прикладных задач. Разработан [1032] комбинированный спектральный метод определения молибдена в гранитах и аналогичных породах, включающий экстракцию элемента ТБФ. Предложены методики экстракционного выделения и последующего определения молибдена в ванадии и ванадатах [1024], индии [851], кобальтово-марганцевых катализаторах и пы-лях рафинирования меди [398], продуктах деления урана-233 и плутония-239 [1037], в металлическом уране [1038, 1040] и его окиси [1040], сталях [1025], никеле [1038, в растворах [346, 399, 1027—1029]. Представляют интерес методы фотометрического определения молибдена, в которых окраска развивается непосредственно в экстрактах после прибавления каких-либо реагентов [1027—1029]. В радиохимии экстракция Mo(VI) из хлоридных растворов может быть использована, например, нри определении радиоизотоиной чистоты препаратов молибдена, вольфрама и рения [621], а в технологии — для выделения молибдена из сложных по составу растворов, в частности, полученных при выщелачивании молибдено-вольфрамовых концентратов [623, 1030, 1034, 1043, 1047] и при переработке кобальто-марганцевых катализаторов и пылей рафинирования меди [397, 398], молибденитовых и шеелито-повеллитовых концентратов и дрз гих продуктов [1045, 1046]. [c.179]


    Салицилаты бериллия экстрагируются алифатическими спиртами [2311, салицилат ванадия количественно извлекается диизобутилкетоном [2051. Практически полностью экстрагируются салицилаты урана(У1), тория(1 ), если в качестве растворителя используется метилизобу-тилкетоп [399, 400]. Насыщенный раствор салициловой кислоты в фурфуроле был предложен для отделения циркония от гафния [202]. Органическими растворителями извлекаются также салицилаты меди [342[, плутония [3841, скандия и других металлов [999]. Экстракция са-лицилатных комплексов значительно повышается в присутствии пиридина [1529]. Для экстракционно-фотометрического определения европия и тербия была применена экстракция тройных фенантролиУ1-салицилатных комплексов бензолом [13881. [c.278]

    Смин свинца составляет Ы0 %, а индия и сурьмы — 2-10- %. Определению свинца и индия в плутонии не мешают висмут, таллий, медь, железо, цинк, уран и серебро, а также галлий, марганец и ванадий, не дающие пиков на ДИП в по лярографируемом растворе. Определению сурьмы мешает висмут при Св1/Сзь 0,3 и таллий при Ст/Сзь 1. Определению индия мешают относительно высокие концентрации кадмия (Д п = 0,15 В). На ДИП растворов диэтилдитиокарбаминатов свинца, индия, а также кобальта, никеля и кадмия наблюдаются адсорбционные пики при более положитель- [c.204]

    Используя индикаторный платиновый электрод и стандартный каломельный электрод сравнения, можно амперометрическя титровать различные системы, в том числе окислительно-восста-новительные. При ультрамикротитрованиях ванадия (рис. 87) и плутонйя реализована, например, возможность их определения по диффузионному току двухвалентного железа, щироко применяемого в качестве восстановителя. [c.143]

    Железо (И). Двухвалентное железо, обычно генерируемое восстановлением Fe + на платиновом катоде в сернокислых растворах (иногда с добавлением Н3РО4), используют в качестве кулонометрического титранта при определении различных окислителей, главным образом, неорганических. О применении электрогенерированного Ре + в сочетании с Мп + уже упоминалось выше (см. стр. 55) [469, 472, 473]. Известны также методы определения церия [135, 453, 693, 694], урана [393, 695], плутония [258, 696, 697], ванадия [135, 698—702], хрома [135, 162, 176, 468, 587, 699, 700, 703-710], теллура [711], марганца [135, 468, 471, 700, 708, 709, 712, 712а], хлора [431, 587, 709, 713, 714], перйодатов [715], иридия [716], щавелевой кислоты и 2-нафтиламина [453]. [c.89]

    Один из основоположников сов. радиохимии и радиевой пром-сти. Руководил (1918—1921) совм. с И. Я. Башиловым созданием первого в России радиевого з-да, на котором были получены (1921) первые препараты радия из отечественного сырья. Разрабатывал технологию пром. получения радия и редких элем. Установил (1924) закон распределения микроком-понентов между кристаллами и насыщенным р-ром (закон Хлопина). Предложил метод определения состава нестойких хим. соед. путем изучения условий сокристаллиза-ции. Изучал условия миграции радиоактивных элем, в земной коре и разработал (1947) метод определения абсолютного возраста пород. Предложил объемный метод определения ванадия, что позволило быстро и с достаточной точностью следить за содержанием этого элем, в промежуточных продуктах радиевого произ-ва. Под его руководством разработана технология пром. получения плутония из урана. Открыл и исследовал радийсодержащие воды. Изучал распространенность гелия и аргона в природных газах, бора — в природных водах. Дал каноническую формулировку (1950) закона разделения радиоактивных в-в посредством изоморфной кристаллизации. Создал школу сов. радиохимиков. Герой Социалистического Труда [c.476]


Смотреть страницы где упоминается термин Ванадий определение в плутонии: [c.543]    [c.784]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.460 , c.461 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Плутоний



© 2025 chem21.info Реклама на сайте