Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титрант кулонометрический

    В методе кулонометрического титрования используются установки с постоянной силой тока. Содержание определяемого вещества рассчитывают по количеству электричества, израсходованного на генерацию необходимого для реакции с анализируемым веществом количества титранта. Кулонометрическое титрование в значительной степени сохраняет аналогию с другими титриметрическими методами. Основное различие относится к приготовлению титранта. В обычных титриметрических методах его готовят заранее по точной навеске или стандартизируют по специальным установочным веществам, а в методах кулонометрического титрования титрант генерируется электрохимическим методом. [c.282]


    Принцип действия микрокулонометрического детектора состоит в следующем. Компонент смеси, выходящей из колонки в потоке газа-носителя (азота), смешивается с потоком газа (кислорода в окислительном варианте и водорода в восстановительном), в атмосфере которого в конверсионной печи при высокой температуре превращается в соответствующий продукт конверсии. Последний поступает в кулонометрическую ячейку, помещенную в конце системы (рис. 48). Ионы определяемого элемента изменяют концентрацию титранта. Возникающий разбаланс моста регистрируется с помощью пары индикаторных электродов. [c.111]

    Рис. д.87. Кулонометрическая уста -новка с внешней генерацией титранта. [c.275]

    В некоторых случаях, когда электрод состоит из металла, способного окисляться (не инертного), он сам может служить источником (вспомогательным реагентом) электрогенерируемого промежуточного реагента, с которым химически взаимодействует определяемое вещество. Например, продукты окисления ртутного и серебряного электродов Н ++- и Ад+-ионы широко применяются в качестве кулонометрических титрантов. [c.200]

    Один из видов ячейки с внешней генерацией кулонометрического титранта представлен на рис. 78. [c.211]

    В то время как при потенциостатической кулонометрии определяемое вещество само вступает в электрохимическую реакцию на рабочем электроде, при кулонометрическом титровании при контролируемой силе тока в процессе химической реакции генерируется продукт, который затем вступает в реакцию с определяемым веществом. Таким образом, данный метод аналогичен классическому титрованию, за исключением того, ЧТО ТИТрант генерируют в процессе электролиза. При генерировании титранта отпадает необходимость применения установочных веществ и установки титра. При этом исключается также ошибка, связанная с разбавлением раствора в про- [c.151]

    Для проведения кулонометрического титрования применяют различную аппаратуру, проводят автоматизацию методов титрования. Этот вопрос подробно рассмотрен здесь не будет [83]. Важным условием проведения данного метода анализа является разделение анодного и катодного пространств электролизера диафрагмой для предотвращения анодного окисления продуктов катодной реакции, и наоборот. В большинстве методов кулонометрического титрования применяют метод получения титранта внутри исследуемого раствора титрование с внутренней генерацией). В особых случаях, например в присутствии посторонних примесей, которые в соответствующих условиях могут вступать в электродную реакцию, титрант получают в отдельной электролитической ячейке и затем сливают в сосуд для титрования титрование с внешней генерацией) [83]. [c.152]


    Так как сила тока поддерживается очень небольшой, а время можно измерить точнее, чем небольшие количества титранта, метод кулонометрического титрования пригоден для определения очень небольших количеств веществ (предполагая, что имеется возможность генерирования подходящего титранта). Можно указать еще некоторые области применения кулонометрического титрования  [c.152]

    Метод кулонометрического титрования имеет ряд существенных преимуществ перед другими титриметрическими методами. Исключаются ошибки титрования, связанные с применением бюреток, трудности, связанные с подбором материала для изготовление поршневых бюреток при работе с титрантами щелочного характера. При работе с растворами титрантов кислого и основного характера отпадают проблемы защиты их от воздейсТ вия окружающей среды, так как приготовление стандартного раствора титранта осуществляется в ячейке для кулонометрического титрования непосредственно перед его применением. Тем самым в значительной степени решаются проблемы хранения растворов, титрантов. Регулируя силу тока, проходящего через ячейку, или соответственно количество электричества, из нейтральных растворов солей можно приготовить стандартные 0,001 — [c.430]

    В настоящем издании описаны все известные типы кулонометрических титрантов. Указаны способы их получения (генерирования) и основные направления их использования. Книга снабжена свободной таблицей веществ, определяемых методом кулонометрического анализа, с кратким указанием основных деталей методики. В ней с максимально доступной полнотой приведена литература по кулонометрии вплоть до 1967 г. [c.343]

    В кулонометрических Т. применяют титрование с внутр. и внеш. генерацией титранта. В первом случае в ячейке кроме индикаторного электрода и электрода сравнения находятся генераторный и вспомогат. электроды (из платины или золота) титрант получают непосредственно в ячейке для титрования в результате электрохим. р-ции на генераторном электроде с участием специально введенного вспомогат. реагента, реже - р-рителя (напр., воды) или материала электрода (напр., серебряного анода). Такие Т распространены благодаря простоте конструкции и высокой точности. Но при наличии побочных р-ций нарушается [c.597]

    Если в прямой кулонометрии электрохимическому превращению подвергается определяемое вещество, то в методах косвенной кулонометрии определение количества вещества складывается из электрохимической и химической реакций. Определяемое вещество не участвует в реакции, протекающей на электроде. В ходе электролиза генерируется титрант, который вступает в химическую реакцию с определяемым компонентом в объеме раствора кулонометрическое титрование с внутренней генерацией). Поэтому в косвенной кулонометрии необходимо иметь способ обнаружения момента завершения химической реакции генерированного на электроде титранта с определяемым веществом. Для установления конечной точки титрования применяют потенциометрический, амперометрический, фотометрический или другие методы. [c.517]

    Кулонометрические титранты в косвенной кулонометрии могут быть получены и вне анализируемого раствора кулонометрическое титрование с внешней генерацией). В этом случае электролизу подвергают отдельный (внешний) раствор и добавляют его в раствор определяемого вещества. Реакция между ним и генерированным титрантом происходит при смешении анализируемого раствора с раствором титранта. [c.517]

    Вспомогательный реагент в кулонометрическом титровании служит своего рода буфером, препятствующим смещению электродного потенциала до значений, когда возможны другие электрохимические процессы, иначе это привело бы к перерасходу количества электричества. Поскольку генерацию титранта, как правило, осуществляют при постоянной силе тока, задача определения количества электричества сводится к измерению времени, в течение которого достигается конечная точка титрования. Эта величина в свою очередь непосредственно связана с количеством генерируемого титранта через стехиометрию электродной реакции. При этом количество определяемого вещества связано с количеством генерируемого титранта через стехиометрию соответствующей химической реакции. [c.525]

    Генерацию титранта можно проводить непосредственно в исследуемом растворе или вне его. При внутренней генерации титрант получают в том же растворе, который содержит определяемое вещество. Внешнюю генерацию кулонометрического титранта применяют редко из-за неудобств, связанных с необходимостью смешивания раствора, подвергнутого электролизу, с раствором, содержащим определяемое вещество. Этот способ уступает по точности внутренней генерации, поскольку перенос титранта необходимо проводить количественно, т.е. без потерь. Однако в тех случаях, когда условия протекания электрохимической и химической реакций различаются, применяют внешнюю генерацию титранта. [c.525]

    Наибольшее распространение в кулонометрическом титровании получили амперометрические и потенциометрические способы индикации конечной точки титрования, в том числе с ионоселективными электродами и с двумя поляризованными электродами. Наряду с ними применяются также оптические способы установления конечной точки кулонометрического титрования (фотометрия и спектрофотометрия), в основе которых лежит зависимость оптической плотности раствора от времени генерации титранта либо от количества затраченного электричества. Потенциометрические и амперометрические способы индикации конечной точки титрования рассмотрены в предыдущих главах. [c.527]


    Успехи в смежных областях электрохимии и химии растворов расширили круг задач, решаемых с помощью кулонометрии. Новые электродные материалы, неводные растворители, неустойчивые в обычных условиях кулонометрические титранты - все это сейчас широко применяется в кулонометрии и кулонометрическом титровании. [c.530]

    Рассмотрим некоторые из кулонометрических титрантов. Особый интерес представляют ионы металлов Се(1У), Со(П), Со(1П), Сг(Ш), Сг(У1), Си(1), Си(П), Ре(П), Мп(УП), 8п(П), Т1(Ш), У(Ш), У(У), а также галогены в различной степени окисления. Значения 530 [c.530]

    К первой группе относятся потенциометрический метод (изменение окислительно-восстановительного потенциала раствора электролита, омывающего один из электродов ячейки, обусловленное реакцией с участием определяемого компонента газовой смеси и зависящее от его концентрации мерой концентрации является изменение э. д. с. ячейки), амперо метрический метод (в деполяризационном его варианте используется зависимость силы диффузионного тока, возникающего в поляризованной ячейке под деполяризующим действием определяемого компонента, от концентрации этого компонента газовой смеси) и кулонометрический метод (тот же амперометрический метод, но осуществляемый в услопиях количественного проведения электрохимической реакции перевода определяемого вещества газовой смеси в другую форму или другое соединение мерой концентрации является количество израсходованного на реакцию электричества или, при непрерывном стабилизированном подводе контролируемой газовой смеси, ток во внешней цепи ячейки). Кулонометрические ЭХ-газоанализаторы обычно выпускаются как автоматические титрометры непрерывного действия с так называемой электрохимической компенсацией. Мерой концентрации определяемого компонента газовой смеси служит в этих приборах ток электролиза, выделяющий из раствора электролита (в котором растворяется определяемый газ) титрант в сте-хиометрических количествах, что обеспечивается электрометрическим измерением точки эквивалентности и автоматическим управлением током электролиза. [c.612]

    Кулонометрическое титрование основано на электрогенерации титранта, который реагирует количественно с определяемым веществом, Так как кулонометрическое титрование проводят при постоянном значении тока, то количество электричества рассчитывают по формуле  [c.162]

    Для успешного определения необходимо создать в растворе такую концентрацию электродноактивного вещества, чтобы она в ходе единичного титрования практически не менялась и пО добрать вещество так, чтобы продукты электролиза количественно и стехиометрически реагировали с определяемым веществом. Кроме того, необходимо ввести контроль за концентрацией определяемого вещества. Любой метод определения конца титрования, используемый классическим титриметриче-скпм анализом, пригоден в кулонометрическом титровании. Таким образом, разница между классическим титриметрическим анализом и кулонометрическим титрованием состоит в том,что титрант в классическом методе вносится извне в виде раствора, а в кулонометрнческом — генерируется непосредственно в титруемом растворе. Рассмотрим сказанное на примере. [c.257]

    На рис. 5.8 приведены варианты двухэлектродной ячейки, пригодной для потенциостатической, амперостатической куло-нометрни и для кулонометрического титрования с визуальной индикацией конца титрования по изменению окраски раствора. В подобной ячейке исследуемый раствор помещается в рабочий объем ячейки и ток, генерирующий титрант, протекает между электродами 2 и 3. Вспомогательной измерительной системы нет. [c.263]

    Во втором случае независимо от того, участвует ли определяемое вещество в электрохимической реакции или нет, из специально введенного электроактивного вещества (вспомогательный реагег т) электролитически получают кулонометрический титрант (промежуточный реагент), способный количественно вступать в химическую реакцию с определяемым компонентом. Зная количество электричества, израсходованное в процессе электролиза, можно рассчитать массу определяемого компонента. [c.144]

    Метод кулонометрического титрования по сравнению со многими другими методами анализа обладает рядом существенных преимуществ, среди которых наиболее важными являются его высокая прецизионность, чувствительность, отсутствие необходимости приготовления титрованных растворов и возможность электрогенерации неустойчивых титрантов. [c.145]

    Титрование повторяют несколько раз, соблюдая постоянство условий электрогенерации кулонометрического титранта. Расчет содержания фосфита в испытуемом растворе и запись результатов титрования приведены выше. [c.150]

    Кулонометрический анализ во многом сходен с электрограви-метрическим. Однако имеется существенное отличие в электрогравиметрии электрический ток применяют для осаждения веществ аналогично реагентам классической гравиметрии, поэтому в данном случае используют избыток тока. Определение как таковое проводят взвешиванием. В кулонометрии, напротив, электрический ток применяют аналогично реагентам титриметрии, т. е. в количестве, эквивалентном определенному веществу. В этом случае количество тока (как и объем титранта в титриметрическом анализе) является мерой количества определяемого вещества, вступившего в реакцию. [c.266]

    Различными способами кулонометрии можно осуществить практически все классические методы титрования. При этом устраняется необходимость приготовления стандартных растворов. Можно также использовать неустойчивые растворы титрантов, как, например, МпЗ+, СиВгг и 5п2+. Кроме того, кулонометрическое титрование легко автоматизировать. Промышленность выпускает большое количество таких приборов. [c.275]

    В отличие ОТ других титриметрических методов в косвенной кулонометрии титрант готовится электрохимически непосредственно действием электронов, причем электрогенерацию титранта можно осуществить в испытуемом растворе за счет внесенного в него подходящего реактива. Такой способ называется кулонометрическим титрованием с внутренней генерацией. [c.201]

    Кулонометрическому титрованию присуща большая чувствительность, чем всем другим известным титриметрическим методам. Кроме того, кулонометрическое титрование обладает рядом несомненно ценных преимуществ исключается необходимость подготовки стандартных растворов титрантов могут быть использованы такие реагенты, которые невозможно приготовить в виде стандартных растворов, или образующие малоустойчивые растворы С1г, Вгг, А ++, Си+, Т1++ , 8п+- и др.) анализируемые растворы в процессе электротитрования не разбавляются чистота вспомогательных реагентов имеет небольшое значение, так как предэлектролизом можно освободиться от мешающих примесей имеется возможность в одном и том же растворе вспомогательного реагента многократно повторять анализ с новыми порциями [c.207]

    Кулонометрическое определение кислот можно проводить непрерывно в потоке продукта и периодически в отдельной пробе. Следует более подробно остановиться на рассмотрении метода кулонометрического титрования с периодическим отбором анализируемой пробы по сравнению с упомянутым выше титрометром с периодическим отбором пробы анализируемого вещества и потенциометрической индикацией конца титрования. Если определяемое вещество неэлектроактивно, генерацию титранта можно осуществить непосредственно в испытуемом растворе. Однако чаще применяют внешнее генерирование титранта. В этом случае нейтральный раствор соли, например 5%-ный раствор сульфата натрия, пропускают через две стеклянные трубки с впаянными диафрагмами. Трубки соединяют солевым мостиком. При приложении соответствующего напряжения к электродам, находящимся в трубках с диафрагмами, в катодной камере образуются ОН-ионы в количестве, эквивалентном количеству электричества, прошедшего через раствор (по закону Фарадея). В результате из катодной камеры через диафрагму вытекает раствор соли известной концентрации, служащий титрантом. [c.430]

    В кулонометрическом титровании используется метод электролитического генерирования (образования) титранта. В этом случае получается картина, похожая на обычное титриметрическое определение, отличаю1дееся тем, что титрант получают в ходе самого титрования. Поэтому такой метод гальваностатической кулонометрии получил название кулонометрического титрования, а электрод, на котором получают (генерируют) титрант, называют генераторным электродом. Для определения конечной точки при кулонометрическом титровании используются потенциометрический, амперометрический, фотометрический или другие методы индикации. [c.56]

    В косвенной кулонометрии электрогенерация титранта может быть осуществлена непосредственно в анализируемом растворе (кулонометрическое титрование с внутренней генерацией) и вне его (кулонометрическое титрование с внешней генерацией). [c.122]

    В методе косвенной кулонометрии (кулонометрического титрования) определяемое вещество не принимает участие в электрохимической реакции, протекающей непосредственно на электроде. В ходе реакции на электроде генерируется промежуточный реагент (титрант), стехиометрически реагирующий с определяемым веществом. Реакции промежуточного реагента с определяемым веществом обычно относятся к типу редокс-реакций, однако это могут быть и кислотно-основные взаимодействия. [c.524]

    Основные требования к кулонометрическому титрованию сводятся к обеспечению 100 %-ного выхода по току при электрогенерации титранта и необходимости быстрого и количественного протекания химической реакции с определяемым компонентом. Кулонометрическое титрование можно использовать для определения концентраций тех веществ, которые являются электрохимически неактивными в условиях электролиза, но количественно вступают в химическую реакцию с окислителями или восстановителями в растворе. В этом способе не требуются стандартные растворы, а титрантом фактически является электрон. При этом возможно определение широкого круга веществ в большом диапазоне концентраций. Методы кулонометрии, в которых генерируется титрант, 524 [c.524]

    Электрогенерация кулонометрических титрантов позволяет использовать неустойчивые реагенты, имеющие высокую реакционную способность. Это исключает необходимость их приготовления заранее, а также позволяет контролировать их концентрацию в растворе и проводить стандартизацию, что в итоге повышает точность определений. [c.525]

    Образовавшиеся на электроде частицы имеют различную окислительную или восстановительную способность. Это позволяет определять широкий круг соединений. Проблема состоит лишь в том, чтобы выбрать такие условия, при которых побочные реакции будут сведены к нулю. Для этого электрогенерацию титрантов проводят в смешанных или индивидуальных органических растворителях, обеспечивающих стехиометрию реакций. В общем случае выбор растворителя для кулонометрического титрования определяется следующими факторами  [c.530]


Смотреть страницы где упоминается термин Титрант кулонометрический: [c.148]    [c.282]    [c.284]    [c.152]    [c.430]    [c.122]    [c.128]    [c.525]    [c.530]   
Основы современного электрохимического анализа (2003) -- [ c.524 ]




ПОИСК





Смотрите так же термины и статьи:

Генерирование кулонометрических титрантов из активных металлических электродов

Генерирование кулонометрических титрантов из галогенов и их соединений

Генерирование кулонометрических титрантов из солей металлов

Кулонометрическое титрование внешняя генерация титранта

Титрант

Титрант кулонометрический генерирование

Титрант кулонометрический из активных электродов

Титрант кулонометрический из галогенов и их соединений

Титрант кулонометрический из солей металлов

Электрогенерирование кулонометрических титрантов в неводных средах



© 2025 chem21.info Реклама на сайте