Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение алюминия методами экстракции циркония

    Экстракция купфероната циркония хлороформом. Такие элементы, как алюминий, магний, бериллий, цинк и другие, нельзя определить фотометрическими методами без отделения Циркония, так как большинство применяемых реагентов либо образует окрашенные соединения и с цирконием, либо максимум оптической плотности с этими реагентами достигается в слабокислой или слабощелочной среде, когда цирконий подвергается гидролизу и осаждается. Наиболее целесообразно разделять эти элементы экстракцией купфероната циркония хлороформом. При этом вместе с цирконием экстрагируются железо, титан, ванадий, ниобий, тантал и др. Купферонат циркония относили к плохо экстрагируемым в хлороформе элементам [645]. Такие элементы, как тантал, ниобий, цирконий и другие, легко осаждающиеся купфероном в кислой среде, нелегко растворяются в органических растворителях [466], а цирконий умеренно растворяется в этилацетате. Основанием для таких выводов могло служить то обстоятельство, что при экстракции купфероната циркония хлороформом расслаивание фаз происходит медленно, а на границе раздела органической и водной фаз, за счет продуктов разложения купфероната в кислой среде, образуются белесые пленки, препятствующие четкому разграничению фаз. Для нахождения оптимальных условий экстракционного разделения циркония и других элементов Елинсон, Победина и Мирзоян [100] изучали распределение циркония между водным сернокислым раствором и хлороформом в присутствии купферона и показали, что наиболее полное отделение циркония достигается в том случае, если сернокислый (1 Л/) водный раствор купферона предварительно экстрагируется хлороформом, а экстракция циркония производится хлоро4юрмным раствором купферона. При этом быстрее достигается расслаивание органической и водной фаз, а на границе раздела фаз не появляются твердые пленки. Кроме того, при таком способе экстракции в хлороформ переходит чистый нитрозофенилгидроксиламин, а продукты разложения купферона, [c.85]


    И ИНДИЙ. Среди других почти совсем не экстрагируются щелочноземельные металлы, бериллий, магний, титан, марганец, кобальт, никель, цинк, молибден и свинец. Иттрий и церий(П1,1У) экстрагируются слабо, лантан и неодим вряд ли вообще экстрагируются. Без сомнения, можно добиться хорошего отделения тория от иттрия и от всех редкоземельных элементов, применив метод фракционной экстракции. Простейшее решение этой задачи, по-видимому, заключается в применении экстракционного метода с промывками (ср. стр. 63), в котором органическую фазу последовательно встряхивают с порциями раствора нитрата алюминия. В действительности этот метод уже был использован более точное знание величин коэффициентов распределения редкоземельных элементов позволило бы легко выбрать оптимальные условия четкого отделения тория как от этих, так и от других плохо экстрагирующихся элементов. Наибольшее затруднение при экстракционном выделении тория посредством окиси мезитила связано с отделением циркония,, который плохо отделяется этим методом и обычно мешает определению тория колориметрическими методами. Поэтому перед экстракцией цирконий следует удалять осадительными методами. Обычно для этой цели лучше применять фторидное осаждение тория, но, как указывалось ранее, цирконий может загрязнять осадок. Ход анализа тория с выделением его окисью мезитила приведен на стр. 758. [c.756]

    Большой интерес представляют методы отделения железа от ряда других элементов. Известны хроматографические методы отделения железа от молибдена [51], кобальта [52], хрома [53] и других элементов. Применяются также экстракционные методы отделения железа от алюминия и магния [54], хрома [55], алюминия, бария, висмута, кадмия, церия (П1), хрома (П1), кобальта, меди, эрбия, индия, свинца, магния, марганца (II), молибдена (VI), никеля, самария, стронция, тория, титана (IV), урана (VI),ванадия (V и IV), йода, цинка и циркония [56], никеля, кобальта, хрома и меди [57]. Описаны методы экстракции железа из растворов хлоридов различных металлов и методы экстракции хлоридного комплекса железа из растворов хлорной и серной кислот [58]. [c.16]

    Магний в цирконии и его сплавах определяют фотометрическим методом с титановым желтым после отделения циркония экстракцией его купфероната и алюминия (при анализе сплавов циркония) экстракцией его оксихинолината [118]. [c.215]

    Р. 3. э. можно отделить от различных тяжелых металлов экстракцией их оксихинолятов смесью купферрон — хлороформ из растворов минеральных кислот (гл. II, табл. Н). В некоторых случаях можно использовать также и другие экстрагенты. Отделение р. з. э. от таких металлов, как железо и алюминий, можно провести ионообменными методами (например, на смоле дауэкс-50 ). Следовые количества р. з. э. можно отделить от циркония ионообменным методом, применяя для этого фторидные растворы . (Отделение р. з. э. от скандия см. в гл. Скандий .) [c.669]


    Предложен [460] метод разделения циркония и алюминия при помощи анионита дауэкс-1. Метод основан на различной адсорбционной способности фторидных комплексов циркония и алюминия на этой смоле. Если пропускать через колонку со смолой дауэкс-1 раствор циркония и алюминия в 0,6 М НС1 и 0,8 М HjFa, то цирконий полностью адсорбируется на смоле, а алюминий переходит в фильтрат. Цирконий может быть вымыт 3 N раствором НС1. Вместе с алюминием в фильтрат перейдут и другие элементы, не образующие достаточно устойчивых фторидных комплексов. Поэтому перед определением алюминия производится отделение купфероном. Купферонаты железа и других элементов отделяют от алюминия экстракцией хлороформом. [c.101]

    Определение алюминия, магния, бериллия, цинка и урана после отделения циркония в виде купфероната. Наиболее эффективным методом отделения циркония, мешающего определению алюминия, магния, бериллия и других элементов, является экстракция купфероната циркония хлороформом из 1 Н2504 (стр. 85). Было показано [ 100], что лучшие результаты получают в том случае, когда раствор купферона был очищен от продуктов его разложения и других примесей, в том числе и от определяемых элементов, экстракцией 1 N сернокислого раствора купферона хлороформом. Экстракцию циркония производят очищенным хлороформным раствором купферона. Цирконий практически полностью извлекается из подкисленного водного раствора двумя экстракциями. [c.196]

    Для флуоресцентного определения циркония в рудах предложен и 3-оксифлавои. Сам реактив флуоресцирует зеленым светом, его циркониевый комплекс — синим, поэтому при измерении яркости свечения растворов используют синий светофильтр. Для отделения от алюминия и некоторых других элементов применено осаждение едким натром, железо удаляют посредством электролиза на ртутном катоде [182]. В развитие более ранних работ по применению в фотометрическом анализе кверцетина [1] описано количественное определение циркония на бумажных хроматограммах в присутствии титана [50, 109]. При флуориметрировании с кверцетином в растворах для отделения от мешающих примесей использована экстракция циркония смесью теноилтрифторацетона с толуолом в зависимости от юстировки флуориметра количественному определению в объеме 25 мл доступны его содержания в пределах от 1 до 25 мкг или от 0,2 до 5 мкг [240]. Недавно разработано определение циркония с еще одним представителем группы флавополов — дати-стином этот метод применен к анализу алюминиевых и магниевых сплавов [49]. [c.190]

    Детально изучено отделение алюминия от основных и второстепенных составляющих этих сплавов и Определение алюминия с помощью ауринтрикарбоновой кислрты Так как анализ длинный, мы не приводим здесь подробное описание, а даем характеристику метода в общих чертах. Сурьму и олово отгоняют в виде бромидов, а свинец удаляют в виде сульфата. Оставшиеся небольшие количества свинца, железа и многих других элементов (стр. 199) удаляют электролитически на ртутном катоде. Экстракцией купферратов хлороформом удаляют титан, цирконий, следы железа (III), и частично ванадий (V). Экстракцией 8-оксихинолятов хлороформом при pH 5 в присутствии перекиси водорода отделяют алюминий от бериллия, скандия, иттрия, хрома и ванадия уран сопутствует алюминию. Окончательное определение алюминия проводят в присутствии меркаптоуксусной кислоты. Показано, что 10—80 у алюминия из образцов весом 2 г извлекаются достаточно полно. [c.215]

    Колориметрическое определение олова в металлическом свинце с помощью фепилфлуорона основано на предварительном экстракционном выделении олова купфероном [233]. Описан вариант, по которому определение олова в цинке и свинце заканчивают фотометрированием его комплекса с пироллидиндитиокарбами-натом в четыреххлористом углероде [234]. Колориметрическое определение алюминия, бериллия, магния и урана в сплавах на основе циркония основано на предварительном экстракционном отделении циркония в виде купфероната [235]. Определение титана в металлическом бериллии с помощью тимола включает экстракцию купфероната титана [236]. Вместе с тем известен метод, основанный на непосредственном определении титана фотометрированием его купфероната, извлеченного 4-метилпентано-пом. Метод применен для определения титана в чугуне, стали, глине и никелевых сплавах [237], [c.246]

    При менее чем полуторакратном избытке купферона, объеме хлороформа 10 мл, объёме водной фазы 30 жл и 1 Л кислотности коэффициент распределения составляет 500, т е. при однократной экстракции около 0,2% 2г остане1ся в водном растворе Очевидно, что двумя экстракциями можно практически полностью извлечь цирконий из раствора. В избранных условиях практически не происходит потерь алюминия, магния, бериллия и цинка. После отделения циркония указанные элементы могут быть определены любым методом (см. стр. 196). [c.86]


    Диметилдиоксим первым из диоксимов применялся для экстракционного отделения никеля [П06, 1201]. от диоксим часто используется в аналитической практике для отделения и концентрирования малых количеств никеля при анализе металлов, сплавов и солей алюминия и алюмосиликатов [931], железа [1004, 10491, кобальта и его солей 11002], урана и его сплавов [334, 12061, чистого электролитического хрома [324], сплавов на основе циркония 11061], кадмия [206] и многих других металлов и сплавов [563, 842]. Экстракция диметилдиоксимата никеля применяется также при анализе перхлоратных растворов легированных сталей [8461, содержа-Ш.ИХ хром, молибден, ванадий, никель, растворов электролитических ванн [678а1, цинковых электролитов для получения цинка [8641 и дpyfиx объектов [16, 5591. Описаны методы экстракционного выделения никеля при помощи диметилдиоксима из руд [429, 8151, медных солей [10011, галогенидов щелочных металлов [45] и из различных биологических материалов [404, 6771. [c.58]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Определение алюминия. Одним из лучших методов определения макроколичеств алюминия является комплексонометрический метод 10]. Определение обычно проводят обратным титрованием, используя в качестве рабочего раствора сернокислый цинк. Мешаюшее влияние титана и циркония устраняют экстракцией их в виде купферонатов смесью изоамилового спирта и бензола. После отделения титана и циркония в растворе можно определить сумму цинка и алюминия. Зная содержание цинка в образце, по разности определяют алюминий. Как видно из данных табл. 7 и 8, алюминий можно определить с достаточной точностью этим способом при удовлетворительной воспроизводимости результатов параллельных определений. [c.305]

    МАко нм Т1 К0 = 1 1 или 1 2 растворитель бутанол 1000-кратный молярный избыток ДФГ. Таким образом, pH экстракции ИА циркония и титана ниже на одну-две единицы аналогичных ИА ва-надия(У), алюминия, железа(Ш), кальция, магния. ЭФ вариант определения циркония из кислого раствора в соединении с реагентом арсеназо I в экстракте позволил повысить чрствительность реакции и селективность определения и применить этот метод для определения миврограммовых количеств циркония в сталях (0,01-0,1 ) без предварительного отделения ионов железа [26]. Относительная погрешность определения в среднем составляет +7,5 . [c.138]


Смотреть страницы где упоминается термин Отделение алюминия методами экстракции циркония: [c.6]    [c.418]    [c.308]   
Аналитическая химия алюминия (1971) -- [ c.174 , c.177 , c.180 , c.181 ]

Аналитическая химия алюминия (1971) -- [ c.174 , c.177 , c.180 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий отделение

Методы отделения

Методы отделения экстракцией

Отделение алюминия методами экстракции

Отделение от циркония



© 2024 chem21.info Реклама на сайте