Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение примесных атомов

    Как показано в разделах УП.5 и XI.2.5, один и тот же примесный атом, находясь в разных местах кристаллической решетки, может в одном месте действовать как донор, а в другом как акцептор. В общем случае будет иметься определенное распределение атомов по местам разного типа, равновесие которого зависит от изменения свободной энергии Гиббса для реакции, описывающей переход атома из одного места в другое. [c.295]


    При низких температурах, т. е. после охлаждения, дело обстоит иначе. Распределение Ферми при низких температурах сужается электроны стремятся занять наиболее низкие, а дырки наиболее высокие свободные уровни. Грубо говоря, при низких температурах все уровни, располагающиеся выше уровня Ферми, будут свободными, а все уровни ниже — занятыми. В результате, как правило, примесные ионы оказываются только в одном валентном состоянии, самое большее — в двух, причем появление двух валентных состояний вместе возможно только тогда, когда положение уровня Ферми приблизительно совпадает с центром запрещенной зоны. В кристаллах без примесей положение уровня Ферми определяется собственными дефектами. Оно может изменяться в пределах, зависящих от положения уровней собственных доноров и акцепторов. При наличии примесных атомов эти пределы могут расширяться, причем примесные доноры, уровни которых располагаются выше уровней собственных доноров, повышают верхнюю границу до положения уровня примесного донора, а примесные акцепторы, уровни которых находятся ниже уровней собственных акцепторов, снижают нижнюю границу до положения уровня примесного акцептора. Отсюда вытекают интересные последствия, касающиеся возможных валентных состояний примесного атома в охлажденном кристалле. Если примесные атомы являются донорами, то их валентность может изменяться только тогда, когда их донорные уровни лежат выше самых низких собственных акцепторных уровней. Это означает, что примесь в таком случае может находиться в виде центров или F (или в виде F", если рассматривается двойной донорный уровень). Когда уровень примесного донора расположен ниже самого низкого уровня собственного акцептора, он всегда занят, т. е. атом примеси оказывается восстановленным. [c.510]

    Распределения атомов (атом. %) примесных элементов в границах зерен стали 20, полученные методами ОЭС, ЭСМА [c.68]

    Для ОСНОВНЫХ элементов решетки (М, X), из которых состоят кристаллы, это приводит к появлению поверхностного и объемного заряда точно так же, как было описано выше. Однако может возникнуть такое положение, когда примесные атомы (У), присутствующие в газе, будут поглощаться поверхностью. Если при этом примесные атомы будут образовывать локальные уровни, то при наличии пустых уровней они будут захватывать электроны (примесный атом является акцептором) или дырки, если уровни заполнены (доноры). Это обусловливает появление поверхностного заряда, который в свою очередь вызывает появление противоположного по знаку заряда, распределенного на поверхности кристалла. Подтверждением является поведение элементарных кристаллов, в которых отсутствуют побочные явления, связанные с нестехиометричностью. В то же время это свидетельствует о сложности рассматриваемых явлений. Так, например, в германии чистая поверхность обладает слабыми полупроводниковыми свойствами р-типа давление кислорода порядка 10"" —10" мм рт. ст. несколько увеличивает р-проводимость, однако при более высоких давлениях Ог эта пороводимость снова уменьшается при давлении Оа, равном 10 мм рт. ст., проводимость р-типа совсем исчезает. [c.561]


    Казалось бы, что это находится в противоречии с фактом снижения скорости адсорбции СО при растворении Li20 в NiO, сонровождающомся ростом концентрации Ni + [5]. В связи с этим была высказана гипотеза, что активными центрами адсорбции с минимальной энергией активации являются катионы Ni +, не связанные с катионами Li+. С ростом концентрации L1+ расстояние между двумя катионами Li+ на поверхности сокращается и при 0,4 ат % Li+ оно равно щести катионным узлам. В этих условиях наиболее удаленные катионы Ni + находятся на расстоянии двух-трех катионных узлов от катиона Li+. Предполагается, что снижение активности Ni + вблизи Li+ связано с влиянием электростатического поля, создаваемого избыточным отрицательным зарядО М кислородного иона вблизи Li+. Чем ближе Ni + находится к Li+, тем сильнее взаимодействие его с избыточным отрицательным зарядом, тем выще энергия, которую надо затратить на разрыв этой связи, тем ниже способность его к электронному переходу по уравнению (2). На активность катиона Ni + по уравнению (1) присутствие нескомпенсированного отрицательного заряда вблизи L1+ оказывает активирующее влияние вследствие стремления системы приобрести катион Ni + в соседнем к Li+ катионном узле. 4eiM ближе реагирующий катион Ni + к Li+, тем выше его адсорбционная способность по отношению к кислороду. Неравноценное положение катионов Ni + и Ni + по отношению к примесному катиону с аномальным нескомпенсированным зарядом приводит к неоднородности активных центров адсорбции. При растворении окиси лития в NiO имеет место изменение распределения активных центров по энергиям активации, следствием которого является наблюдаемое изменение кинетического закона адсорбции. С ростом концентрации Li+ число активных центров адсорбции кислорода увеличивается, а СО снижается. [c.74]

    Условия для существования примесных центров могут быть созданы различными способами, (а) Замещение атома основной решетки на элемент с нормально большей валентностью вызывает появление избыточного положительного заряда и связанного с ним электрона. Наиболее ярким примером примесей этого типа являются примеси в германии и кремнии. В ряду углерод, кремний и германий образуются ковалентные структуры с алмазной решеткой. Тепловое воздействие посредством фононного механизма может вызывать появление собственной проводимости в этих веществах. Однако если элемент с валентностью, которая нормально больше четырех, замещает атом в такой решетке, то плотность его электронного облака будет стремиться принять тетрагональное распределение, характерное для алмазной решетки. Чтобы была достигнута такая форма распределения электронного облака, элемент образует частично ионные связи, причем получается однократно заряженный ион совместно с квазисвободным электроном, расположенным около атома примеси. Энергия связи этого электрона меньше энергии связи в вакууме в К раз, где К — диэлектрическая постоянная среды. Следовательно, такие дефекты в основном ионизированы. Это характерно для полупроводников п-типа. (б) Замещение атома в решетке полуметалла на элемент с валентностью, нормально более низкой, производит эффект, обратный только что рассмотренному. Для того чтобы распределение электронного облака было близким к тетрагональному, элемент должен приобрести добавочный электрон, который он получает из кристаллической решетки вблизи от своего местоположения. В результате образуется положительная дырка, локализованная около атома примеси. Как и ранее, энергия связи положительных дырок станет меньше в К раз и, следовательно, дырки будут в основном ионизированы. Это типично для примесных дырочных полупроводников, (в) Вакансии в решетке и атомы или ионы в междуузлиях. Так как дефекты решетки подробно рассматриваются в другой главе этой книги (гл. 2), мы остановимся только на отдельных моментах. [c.171]

    Литературу по этому вопросу можно найти в работах [175, 176], где рассмотрены методы интерпретации данных по флуоресценции и приводятся результаты исследования распределений по вращательным состояниям в пучке чистого N2 и примесных пучков N2 с Не, Ne и Аг при температурах 300— 1700 К. В работе [175] рассмотрена спонтанная флуоресценция пучка молекул СО, образованного источником типа Кампарга при давлениях торможения свыще 30 ат и температуре торможения 2500 К. Анализ данных усложняется наличием значительного излучения фонового газа, однако метод позволяет получать вращательные и колебательные распределения молекул СО как в пучке чистого газа, так и в примесных пучках СО с N2 и Аг.  [c.190]


Смотреть страницы где упоминается термин Распределение примесных атомов: [c.65]    [c.94]   
Химия несовершенных кристаллов (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Примесные атомы



© 2024 chem21.info Реклама на сайте