Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Примесные элементы

    Вторым фактором, влияющим на стойкость стали в морской атмосфере, является наличие в ее составе примесных элементов, например меди. Установлено, что небольшие количества таких примесей, как медь, никель, хром, кремний и фосфор, снижают скорость коррозии [c.31]

    IX. МЕТОДЫ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СОПУТСТВУЮЩИХ И ПРИМЕСНЫХ ЭЛЕМЕНТОВ [c.222]

    Таким образом, наиболее перспективным способом уменьшения склонности к КРН является контроль состава инконеля 600 по содержанию примесных элементов, а не углерода. [c.365]


    Интенсивность линий измеряют с помощью фотографической пластинки. Коэффициенты а п Ь определяют из двух уравнений с известными концентрациями двух образцов, сфотографированных при одинаковых условиях на одной пластинке. Для спектра образца с неизвестной концентрацией примесного элемента Сх, сфотографированного на той лее пластинке, измеряют и находят неизвестную концентрацию по формуле [c.44]

    Как было уже показано, химические методы очистки веществ обладают большими возможностями. В некоторых случаях хороших результатов можно ожидать даже при очистке простых веществ от сопутствующих им примесных элементов-аналогов [уравнения (1.11а), (1.116)]. В целом же очистка веществ от близких к нему по свойствам примесей химическими методами обычно малоэффективна. Действительно, если обратиться к периодической системе элементов, то можно заметить, что сходные по свойствам элементы имеют и близкую по величине электроотрицательность. В таблице электроотрицательности некоторых из них, например 51 и Ое, занимают одно место. Это означает, что различие в энергиях их взаимодействия с каким-либо третьим элементом не должно быть большим, особенно при высокой температуре. При более низкой температуре [c.30]

    Наоборот, атом бора, имеющий валентность, равную трем, сможет образовать связи лишь с тремя из своих четырех соседей. Ненасыщенная свободная связь четвертого соседа является акцептором и может вызвать дырочную проводимость. Практически каждый атом примесных элементов третьей или пятой группы в германии или кремнии отдает или принимает один электрон. [c.519]

    Использование термодинамики для расчета химических равновесий, описанное в предыдущих главах, относилось к газовым реакциям и реакциям с участием чистых индивидуальных веществ. Между тем и в природе и в технике практически никогда не приходится иметь дело с чистыми веществами. Химически чистые вещества представляют собой лишь предельное состояние, приближение к которому требует больших усилий. Применяемые в новых отраслях техники сверхчистые металлы и полупроводники содержат по несколько атомов примесных элементов на миллион атомов основного материала. [c.96]

    Тетрахлорид кремния, получаемый хлорированием ферросилиция, загрязнен хлоридами примесных элементов. Очищают его дистилляцией (перегонкой). [c.138]

    Использование рентгенофлуоресцентного метода позволило установить химический состав инородных включений. Установлено, что основным примесным элементом является железо. [c.139]


    Во втором издании (первое — в 1980 г.) рассмотрены коррозионно-стойкие стали, а также сплавы на основе железа и никеля, применяемые для службы в агрессивных средах. Описаны их структура, механические и физические свойства в широком диапазоне температур. Приведена соответствующая нормативно-техническая документация. Изложены механизмы различных видов коррозии. Показана роль структурных факторов, легирующих и примесных элементов в формировании свойств коррозионно-стойких сталей и сплавов. [c.320]

    В полученном слитке нужно ожидать то же распределение примесей, что и на границе раздела фаз. Относительно германия этот вывод справедлив при легировании его примесными элементами III—V групп периодической системы Менделеева (бор, калий, индий, олово, свинец, сурьма, фосфор, мышьяк). [c.202]

    Для определения основных и примесных элементов в сложных пробах необходимо применять более тщательные процедуры коррекции влияния основы. Грубо их можно разделить на две категории модель коэффициента влияния [c.87]

Рис. 5.3. Заселенности связей М—N (ЗС, е) в системах p-S зN4 M, где примесный элемент М замещает кремний [13] Рис. 5.3. <a href="/info/761243">Заселенности связей</a> М—N (ЗС, е) в системах p-S зN4 M, где примесный элемент М замещает кремний [13]
    В зависимости от содержания примесных элементов медные руды делят па медно-молибденовые, медно-цинковые, медно-никелевые, медно-кобальтовые. В этом комплексном сырье содержатся и другие ценные элементы благородные металлы, селен, теллур, индий, германий, таллий, рений, свинец, кадмий, висмут. [c.83]

    Инженерами В.П. Соседовым, Л.П.Овсянниковой и A. . Кармановым в 1957-1960 гг. создан процесс получения особо чистого графита классов В-3 и В-4. Здесь уже требовалась чистота значительно более высокая, чем для реакторного графита. Если в последнем общее содержание зольных примесей допускалось до 20 тысячных долей процента, то в особо чистом графите эта величина не должна была превышать одной тысячной процента, а содержание отдельных примесных элементов — не более М0 %. Такой фафит потребовался для получения сверхчистых германия и кремния в технологии создания полупроводниковых элементов в качестве контейнерного материала. Его производство было также организовано на МЭЗе, что потребовало модификации некоторых печей графитации, использования при газотермическом рафинировании кроме хлора также фторсодержащих соединений, получения в печи температуры не ниже 3000°С и проведения процесса в чистых углеродных материалах за время, не превышающее 10—12 ч. [c.44]

    Элементарные кремний и германий представляют собой полупроводниковые материалы, которые в настоящее время очень широко применяются для производства транзисторов, термистеров, фотоэлементов и других деталей радиоэлектроники, радио- и электротехники. Электропроводность кристаллических германия и кремния (и других полупроводников) в значительной степени обусловлена ничтожными примесями атомов других элементов, замещающих атомы германия и кремния в их кристаллических решетках. Появление некоторого числа свободных слабосвязанных электронов или электронных вакансий, так называемых дырок, придает кристаллам полупроводниковых материалов свойство избирательной проводимости отрицательной — электронной — или положительной — дырочной. Электропроводность полупроводников определяется не только природой и концентрацией примесных элементов (которая, вообще говоря, обычно бывает очень мала атома примеси на 10 —10 атомов основного элемента), но и физическими [c.104]

    Выплавка меди из ее сульфидных руд или концентратов представляет собой сложный процесс. Обычно он слагается из следующих операций обжиг, плавка, конвертирование, огневое и электролитическое рафинирование. В ходе обжига большая часть сульфидов примесных элементов преврап(ается в оксиды. Так, главная примесь большинства медных руд пирит FeSj превращается в РегОз- Газы, отходящие при обжиге, содержат SO2 и используются для получения серной кислоты. [c.534]

    В качестве внутреннего стандарта при спектрографическом методе анализа веществ на примесные элементы часто используется фон в спектре. В этом случае иптепсивиость фона измеряется справа и слева от спектральных линий определяемого элемента, а затем усредняется. [c.94]

    Наличие примесей обычно затрудняет проявление полупроводниковых свойств (из-за заполнения ряда нижинх подуровней зоны проводимости электронами примесных элементов). Поэтому полупроводники почти всегда подвергают самой тщательной очистке. Одиако зате.м их часто в ювь загрязняют ничтожными количествами определенных примесей, уровни которых располагаются между валентной зоной и зоной проводимости самого полупроводникового вещества. Подбирают эти примеси таким образом, чтобы усилить либо электронную, либо дырочную проводимость. Первое обычно достигается добавками веществ, сравнительно легко теряющих электроны, второе — сравнительно легко их захватывающих. Например, замена атома 51 (4 внешинх электрона) атомом Аз (5 внешних электронов) в кристалле крег.. г.ня способствует уснлеиню его электронной проводимости, а замена ато .том В (3 внешних электрона) — усилению дырочной проводимости. [c.94]


    Лериоды полураспада и энергии излучения образовавшихся радиоактивных изотопов различны для отдельных элементов, в связи с чем можно достигнуть значительной специфичности определения. В одной навеске анализируемого материала можно определить большое число примесных элементов. Наконец, достоинством метода является то, что-нет необходимости в количественном выделении следов элементов—применение эталонов позволяет получить правильный результат даже в случае потери некоторой части определяемого элемента. [c.786]

    Предположим, что перед химиком-аналитнком стоит задача аттестовать большую партию однотипных изделий на содержание некоторого компонента. Пусть, для определенности, это будет партия из 10 тыс, германиевых диодов, которые необходимо охарактеризовать содержанием примесных элементов мышьяка, железа и кремния. Очевидно, что технологический режим изготовления полупроводниковых изделий должен обеспечить постоянство химического состава всех изделий данной партии. Однако в любом процессе существует большое число неконтролируемых фактов, которые не могут быть устранены даже при самой тщательной отработке технологического режима. Поэтому содержание примесных элементов будет несколько колебаться от изделия к изделию. Иными словами, концентрация примесных элементов будет случайной величиной. Естественно, что аналитик в целях аттестации не может подвергнуть анализу все 10 тыс. изделий, ибо это связано с чрезмерными затратами времени и средств и разрушением изделий. [c.68]

    Для характеристики всей партии аналитик отберет некоторое относительно небольшое число изделий и проведет в них определение примесей, Очевидно, среднее содержание, найденное при анализе нескольких образцов, можно считать мерой содержания примеснЫх элементов во всей партии. Этот общепринятый метод исследования массовых явлений носит название выборочного ме-тдда. Отобранная для анализа часть изделий называется выборкой или выборочной совокупностью, срвокупность всех изделий — генеральной совокупностью. В равной степени оба эти понятия могут быть отнесены также и к содержанию примесных элементов, и к результатам химического анализа на эти элементы. Выборка, очевидно, должна возможно более походить на генеральную совокупность, чтобы по ией можно было более или менее строго судить о последней. Это означает, что если в генеральной совокупности можно выделить отдельные группы или классы, отличающиеся друг от друга по тому или иному признаку, в выборке онн должны быть представлены приблизительно в гой же пропорции. Если это условие соблюдается,, выборку можно считать представительной. [c.68]

    Изучено поведение примесных элементов (гуминовые кислоты, железо, ванадий, хром), отрицательно влияющих на цементацию галлия, при его экстракции. Показано, что данные примеси соэкстрагироваться с галлием не будут. Соответственно не будут оказывать отрицательного воздействия на процесс электрохимического получения чернового галлия. [c.83]

    Общим для способов введения радиоизотопов в образец за счет ядерных реакций является то, что активироваться могут не только те составляющие его элементы, которые представляют интерес для данного коррозионного исследования, но и другие присутствующие элементы, включая примесные. Кроме того, при облучении возможно образование нескольких радиоизотопов одного элемента, а также дочерних радиоактивных продуктов распада первично возникающих радиоизотопов. Все это усложняет у-спектр, соответственно затрудняет селективный анализ и во многих случаях рассматривается как недостаток, тем более что при больщем сечении ядерных реакций на примесных элементах и не слишком большом (на и не очень малом) времени полураспада возникающих в них радиоизотопов вклад примесей в суммарную наведенную радиоактивность может оказаться значительным даже при относительно низком содержании их в образце. Однако рациональный выбор условий. радиоактивации образцов, измерительной аппаратуры и режима регистрации излучения позволяет обычно избежать осложнений при анализе. [c.208]

    Избыток кремния приводит к небольшому уменьшению сопротивления КР, однако сопротивление при этом остается относительно высоким [51]. Добавки марганца и хрома к сплавам серии 6000 регулируют размер зерна и увеличивают как прочность, так и пластичность [115]. Сплавы, имеющие добавки хрома и марганца, имеют минимальную чувствительность к межкристаллитной коррозии в растворах типа соль — кислота и соль — пероксид водорода, особенно в присутствии небольших количеств примесного элемента железа [115]. Медь также способствует повышению прочности сплава, однако при содержании>0,5 % Си сопротивление сплава к коррозии понижается [116]. Хотя сплавы системы А1 — Мд — 51 имеют высокое сопротивление общей коррозии и КР [51, 115], определенные отклонения от стандартной термической обработки могут сделать эти сплавы чувствительными к КР в состоянии естественного старения Т4. Это имеет место, когда температура под закалку слишком высока, а скорость закалки невысокая [51, 117]. Даже в этих условиях КР на поперечных образцах сплава 6061-Т4 происходило только на высоконапряженных пластически деформированных образцах и отсутствовало при испытании образцов на растяжение, напряженных на 75 % ог предела текучести. Искусственное старение закаленного с низкой скоростью сплава 6061-Т4 до состояния Тб устраняло тенденцик> к КР [51]. [c.233]

    Природа МКК сложна н определяется многими факторами [15, 16]. По современным представлениям основными причинами МКК являются обеднение границ зерен хромом и другими легирующими элементами за счет образоваиия и выделения по границам зерен карбидов хрома, или 6-феррнта либо о-фазы растворение избыточных фаз, возникновение сегрегаций по границам зерен, повышенный уровень дефектности решетки по границам зерен аусте-нита. В зависимости от окислительных условий среды МКК протекает по тому или иному механизму. Так, в восстановительных средах основной причиной МКК считается обеднение границ зерен хромом, а в сильиоокнслитель-ных средах—отрицательное влияние сегрегаций таких примесных элементов, как кремний, фосфор и др. [c.316]

    Рассматривая процессы диффузии в монокристаллах германия, легируемых примесными элементами I или VIII групп периодической системы Менделеева (литий, медь, серебро, железо, никель), видно, что массоперенос в твердой фазе полупроводника значительно выравнивает неравномерное распределение примесей, возникшее на фронте кристаллизации. Например, при росте кристаллов германия радиусом Гк=15 мм со скоростью 1 к=1,8 mmImuh, легированного литием D = = 8,6-10 iej eK, при 800° С число Яед=50 и из рис. 67 можно наблюдать уменьшение радиальной неравномерности состава кристалла в процессе его роста. [c.202]

    Аналогичным образом ири оценке качества особо чистых веществ, используемых для изготовления полупроводниковых материалов. обращается инимание не только па содержание отдельных микропримссей, но и на суммарное содержание всех возможных в данном веществе микроиримесей, а это и есть нормирование, по крайней мире, 30—4С различных примесных элементов [17]. По и в этом случае следует подходить дифференцированно к различным микронримесям. Так, например, было установлено [12], что микропримеси Аи, Мп, Fe, Си и СиО [c.23]

    Ряд материалов (например, руды, минералы, осадки и высушенные замораживанием биологические материалы) анализируют методом РФС, сначала растирая их, а затем размальшая в тонкий порошок с частицами менее 50 мкм в диаметре. Затем порошок прессуют в таблетку. Если необходимо, добавляют 5-10% связующего материала (целлюлоза, поливинилацетат), чтобы сделать таблетку механически устойчивой. Прессованные таблетки отвечают требованиям для определения следов и примесных элементов. [c.82]

    Определение следовых и примесных элементов в жидкостях можно проводить напрямую без пробоподготовки. Типичным примером служит определение серы в диапазоне концентраций 1-100 млн в нефтепродуктах. Для более низких концентраций требуется предварительное концентрирование. Ионы переходных металлов в воде могут быть собраны на ионообменной смоле, например Ке1ех-100. Затем смолу можно спрессовать в таблетку и анализировать обычным путем. РФС полного отражения позволяет проводить прямой анализ воды с пределами обнаружения на уровне млрд , просто помещая каплю на отражатель (рис. 8.3-16,6). [c.83]

    Крайне низкие пределы обнаружения уже сегодня могут быть достигнуты методом НАА для многих материалов, таких, как алмаз и графит, кремний и другие материалы на его основе, а также органические материалы, используемые в микроэлектронике, например полиимиды. При активами углеродсодержащих материалов не образуется радионуклидов основы с детектируемой активностью. Таким образом, можно определять все индикаторные радионуклиды без каких-либо помех со стороны радионуклидов основы (например, см. рис. 8.4-6). В НАА кремния и кремнийсодержащих материалов радионуклид 81, образуемый в реакции 81(п,7) 81 из основы, благодаря его малому периоду полураспада 1х/2 = 2,6 ч) оказывает влияние только при определении короткоживущих индикаторных радионуклидов. Более того, довольно низкие сгт (0,116) и изотопная распространенность 81(3,1%), а также тот факт, что является почти чистым /3-излучателем, еще больше уменьшают степень влияния 3 81. Поэтому ИНАА можно рассматривать как наиболее мощный метод ультраследового анализа кремния и кремний содержащих материалов, таких, как кварц, нитрид кремния и карбид кремния. В ИНАА, использующем современную 7-спектрометрию, поток нейтронов 10 см -с и оптимальный режим облучения, можно достигнуть крайне низких пределов обнаружения для большого числа примесных элементов в кремнии, как можно видеть из рис. 8.4-9. 42 элемента можно определить при содержаниях < 1млрд . [c.124]

    Линии мешающих примесных элементов при этом не расщепляются и накладываются только на некоторые компоненты или отделяются от них (рис. 58). На этом основано определение содер-жения рения в разных продуктах без его предварительного выделения. Мешающая линия марганца накладывается только на первую компоненту линии рения, линия хрома — на вторую, линии Мо 3460,226 и 3460,784 А отделяются от линии рения. Так, в работе Витушкиной и Файна [92] при использовании спектрографа ДФС-3 со специально изготовленной решеткой с 1200 штрих/ ил анализ молибденита проведен с достаточной чувствительностью и точностью без предварительного выделения рения. Линейная дисперсия вблизи интенсивных линий Ке 3460,465 и 3464,726 А составляет 0,95 и 0,53 к мм. [c.160]

    Получение пентакарбоиила железа, основанное на синтезе его из элементарного железа и окиси углерода, является первой фазой карбонил-процесса, в которой доступное и дешевое железосодержащее сырье обрабаты-ваегся технической окисью углерода, образуя полупродукт производства — карбонил. В соответствии с общими принципами осуществления карбонил-процесса синтез пентакарбонила железа производится обычно при высоком давлении окиси углерода (до 200 ат) и при относительно низких температурах (180—200 °С). При этом в процессе синтеза карбонила осуществляется достаточно глубокая очистка исходного железа, заключенного в железосодержащем сырье, от большинства примесных элементов, которые не образуют в условиях процесса летучих карбонилов. Получаемый при синтезе технический пентакарбонил является, таким образом, достаточно чистым химическим соединением, содержащим лишь следы некоторых элементов, сопутствующих железу. По этой причине пентакарбонил железа представляет собой наиболее подходящий исходный продукт для получения из него во второй фазе карбонил-процесса в сочетании с последующей термообработкой особо чистого железа классов В-3—В-5. Кроме того, как отмечалось выше, пентакарбонил железа постепенно начинает приобретать самостоятельное значение в ряде отраслей техники. [c.49]

    Са и Ме входят в состав важнейших минералов кальцита СаСОз и доломита СаСОд МеСОд, являющихся основой большинства осадочных пород известняка, мела, мрамора, ракушечника и т. д. Эти минералы вместе с кремнеземом ВЮа служат исходным сырьем для шихтования в различных пирометаллургических переделах. В результате плавления они переходят в состав шлаков, в которых растворяются кислые оксиды примесных элементов серы, фосфора, мышьяка и т. д. [c.138]

    Установлено, что при введении примесей замещения (81 А1, С К) в соседние узлы в спектре возникают примесные 81, С-уровни вблизи нижнего края ЗЩ нитрида. Резко отличным становится спектр примесных состояний для антисайтов (81 —> Ы, С А1). Уровни дефектов концентрируются в области ЗЩ кристалла и приводят к драматическим изменениям диэлектрических свойств матрицы. Анализ энергетического состояния систем показал (табл. 2.6), что при замещении 81 —> А1, С —> N наиболее химически стабильной будет система с кластером примесных элементов, где образуются прочные межатомные связи 81—С. Менее выгодно изолированное положение дефектов. [c.57]

    Таким образом, расчеты 86] указьшают, что при формировании вюртцитоподобных ТР (AlN)J (Si )l в процессе замещения узлов исходной решетки матрицы примесные элементы будут объединяться в кластеры с образованием прочных ковалентных связей 81—С и А1—N. Как результат, при сравнимом содержании примесных и собственных элементов можно ожидать объединение (или упорядочение) кластеров с возникновением концентра-ционных неоднородностей в ТР или образование индивидуальных фаз с дальним порядком в расположении разносортных элементов по узлам вюртцитоподобной решетки. [c.59]

    Кальций — широко расиространенный химический элемент — входит в состав почти всех природных и промышленных материалов. Содержание его в объектах колеблется в широких пределах от основы в известняках, доломитах и силикатах до следовых количеств (высокочистые металлы). Поэтому аналитическая химия кальция решает вопросы как определения сравнительно больших количеств кальция в присутствии магния и других сопутствующих элементов (в этом случае примеси не сказываются, как правило, на точности получаемых результатов), так и определения следов кальция в различных материалах, где точность результатов зависит от природы основы и в большей степени от количественного содержания и природы других примесных элементов. [c.5]


Смотреть страницы где упоминается термин Примесные элементы: [c.571]    [c.45]    [c.113]    [c.229]    [c.266]    [c.12]    [c.22]    [c.119]    [c.107]    [c.120]    [c.160]    [c.58]    [c.107]   
Структура коррозия металлов и сплавов (1989) -- [ c.57 ]




ПОИСК







© 2024 chem21.info Реклама на сайте