Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Токи цитоплазмы растений

    Актин растений известен главным образом своей связью с током цитоплазмы, который создается толстыми актиновыми тяжами, присоединенными к плазматической мембране. Эти тяжи представляют собой пучки микрофиламентов одинаковой полярности у всех филаментов к мембране прикреплен оперенный конец. Каков механизм течения цитоплазмы, точно не известно, но, по-видимому, в нем принимает участие миозин. Возможно, что актин помимо создания цитоплазматического тока выполняет и другие, пока неизвестные функции. [c.70]


    ВОЗМОЖНОСТИ взаимодействия клеток, замурованных в ткани друг с другом и с окружающей их средой. Однако растительные клетки изобрели самые хитроумные способы преодоления этих ограничений. Непосредственная взаимосвязь клеток столь же важна для многоклеточных растений, как и для многоклеточных животных поэтому возникли специальные канальцы, соединяющие цитоплазму растительной клетки с цитоплазмой соседних клеток (при этом обеспечивается контролируемый переход ионов и небольших молекул). Кроме того, у высших растений длинные тяжи цилиндрических клеток соединены друг с другом перфорациями, в результате чего образуются длинные трубки, обеспечивающие ток воды и питательных веществ. [c.399]

    Основная причина гибели теплолюбивых растений от действия низких положительных температур связана прежде всего-с дезорганизацией обмена нуклеиновых кислот и белков, нарушением проницаемости цитоплазмы (повышением ее вязкости), прекращением тока ассимилятов и накоплением токсических веществ в клетке, Холодоустойчивость определяется способностью растений сохранять нормальную структуру цитоплазмы и изменять обмен веществ в период охлаждения и последующего повышения температуры. [c.511]

Рис. 20-53. Флуоресцентная микрофотография небольшой части крупной вакуолизированной клетки стебля. Видны пучки актиновых филаментов в тяжах, пересекаюших вакуоль. Клетку окрашивали фаллоидином (меченным родамином)-соединением, которое прочно и специфически связывается с актиновыми филаментами. Полагают, что пучки актина, расходящиеся из области ядра (Я), имеют отношение к быстрому току цитоплазмы, который характерен для крупных вакуолизированных клеток высших растений Вероятно, в этом каким-то образом участвует и миозин. Рис. 20-53. Флуоресцентная микрофотография небольшой части крупной вакуолизированной клетки стебля. Видны <a href="/info/1886312">пучки актиновых филаментов</a> в тяжах, пересекаюших вакуоль. Клетку окрашивали фаллоидином (меченным родамином)-соединением, которое прочно и <a href="/info/829140">специфически связывается</a> с <a href="/info/1339102">актиновыми филаментами</a>. Полагают, что пучки актина, расходящиеся из <a href="/info/1118564">области ядра</a> (Я), имеют отношение к <a href="/info/944451">быстрому току</a> цитоплазмы, который характерен для крупных вакуолизированных клеток высших <a href="/info/1903565">растений Вероятно</a>, в этом каким-то образом участвует и миозин.
    Сопротивление корней и их водный потенциал в значительной степени должны зависеть от скорости восходящего водного тока в растении, связанной с испаряющей деятельностью надземных органов. Вместе с тем, однако, они регулируются физиологическими механизмами самих корней, о чем свидетельствует автоколебательный характер поглощения воды [243—245]. Об автоколебательном характере транспорта воды в растении более подробно речь пойдет в следующей главе. Здесь же мы коснемся лишь вопроса о механизмах поглощения воды корнями. Исключительный интерес для выяснения этого вопроса представляют опыты, проведенные А. П. Петровым [244]. На корневые волоски проростков овса, находившихся в камере с относительной влажностью воздуха около 99%. надевали прямые или кольчатые микропотометры или прикрепляли к поверхности изогнутые очень тонкие капилляры. Ход поглощения воды отсчитывали с помощью микроскопа. Установлено, в частности, что 1) осмотический потенциал наружного раствора не определяет скорости поглощения воды, так как в водопроводной и дистиллированной воде, в разведенном вдвое и в неразведенном питательном растворе Хогланда — Арнона скорость поглощения воды оказалась одинаковой 2) скорость поглощения воды не пропорциональна площади контакта волоска с водой 3) поглощение воды волоском происходит в той зоне волоска, где находится основная масса цитоплазмы если последняя сосредоточена- у основания волоска, то и при полном погружении волоска в потометр сильнее поглощает именно эта зона 4) поглощение воды нилiaeт я с возрастом (длиной) волоска старые волоски более склонны к выделению воды 5) зона волоска против центральной вакуоли не поглощает воду, как это показали опыты с кольцевым микропотометром, который можно было укреплять в различных частях волоска 6) малонат в слабой концентрации (ЫО М) ускоряет поглощение воды, в концентрации же, подавляющей дыхание (1-10 М), вызывает сначала кратковременную вспышку поглощения воды, а затем его угнетение с последующей гибелью клетки другие ингибиторы дыхания — цианид, азид натрия, флюорид — действуют сходно в слабых концентрациях усиливают, а в более сильных — подавляют поглощение воды 7) в ходе поглощения наблюдаются примерно двухминутные ритмы. [c.113]


    В цитоплазме клеток растений обнаружены немышечные актин и миозин (см. 1.1.2). Движущая сила тока цитоплазмы в клетках нителлы возникает на границе раздела фаз между эктоплазмой (где локализованы микротрубочки), находящейся в состоянии геля, и эндоплазмой в состоянии золя. С помощью электронной микроскопии в этой зоне обнаружены субкортикальные фибриллы, направленные в сторону движения цитоплазмы. Каждая фибрилла состоит из 50-100 микрофиламентов диаметром 5 — 6 нм, состоящих из Ф-актина. Нарушение структуры микрофиламентов (обработка клеток цитохалази-ном В) прекращает движение. Актиновые филаменты фукцио-нируют в комплексе с миозином эндоплазмы, который обладает АТРазной активностью. Предполагается, что движущую силу цитоплазмы обусловливают и взаимодействия актиновых [c.391]

    Наши сведения о структуре миозина растений пока довольно скудны, однако пучки актиновых филаментов найдены в самых разных растительных клетках, в том числе и в тех, что формируют волоски. Тот факт, что в большинстве клеток высших растений цитоплазма может двигаться во многих направлениях (в отличие от однонаправленного тока, характерного для гигантских клеток водорослей), позволяет думать, что соседние пучки актиновых филаментов здесь могут иметь противоположную полярность. [c.195]

    Ксилема - сложный компонент системы проводящих тканей. Зрелые элементы сосудов ксилемы представляют собой погибшие клетки, лишенные цитоплазмы. Боковые стенки их сильно лигнифицированы, и на их внутренней стороне имеются вторичные утолщения. Эти трубочки обеспечивают перенос воды и растворенных в ней неорганических ионов от корней к остальным частям растения (рис. 20-25). Ксилема также осуществляет опорную функцию, особенно у древесных растений. Ток жидкости в ксилеме направлен в одну сторону - к местам испарения влаги. Вода насасывается в трубочки, похожие на капилляры, благодаря испарению. Лигнин откладывается вокруг сосудов ксилемы таким образом, что получаются очень устойчивые к сжатию структуры, что весьма важно для трубочек, несущих жидкость, находящуюся под отрицательным давлением. Без подобного укрепления длинные трубочки попросту бы слиплись, как тонкая соломка для коктейлей. [c.403]


Смотреть страницы где упоминается термин Токи цитоплазмы растений : [c.424]    [c.94]    [c.97]    [c.170]    [c.423]    [c.424]    [c.424]    [c.65]    [c.208]    [c.290]    [c.399]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.277 , c.423 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.277 , c.423 ]




ПОИСК





Смотрите так же термины и статьи:

Цитоплазма



© 2025 chem21.info Реклама на сайте