Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидная цепь конфигурация спирали

Рис. 24.2. Схематическое представление двух возможных форм альфа-спирали о — левая спираль, б — правая спираль. Правая спираль полипептидных цепей обнаружена во многих белках. Во всех случаях аминокислотные остатки имеют Ь-конфигурацию. К — боковые цепи различных остатков. Рис. 24.2. <a href="/info/1012491">Схематическое представление</a> <a href="/info/1696521">двух</a> <a href="/info/1548849">возможных форм</a> альфа-спирали о — <a href="/info/32847">левая спираль</a>, б — <a href="/info/32850">правая спираль</a>. Правая спираль полипептидных цепей обнаружена во <a href="/info/1435480">многих белках</a>. Во всех случаях аминокислотные остатки имеют Ь-конфигурацию. К — <a href="/info/168742">боковые цепи</a> различных остатков.

    Хотя Полинг получил а-спираль, почти не используя рентгеноструктурных данных, он знал об их существовании и до некоторой степени их учитывал. Благодаря наличию этих данных можно было быстро отбросить значительную часть возможных трехмерных конфигураций полипептидной цепи. Точные рентгенографические данные помогли бы и нам быстрее продвинуться в изучении более сложной молекулы ДНК. Простой просмотр рентгенограмм ДНК избавил бы нас от многих ошибок на первых же шагах. К счастью, одна более или менее приличная рентгенограмма уже была опубликована. Ее пятью годами раньше получил английский кристаллограф У. Т. Астбери, и она могла послужить нам отправной точкой. Однако гораздо лучшие рентгенограммы кристаллической ДНК, полученные Морисом, сэкономили бы нам от шести месяцев до года труда. Беда была в том, что они принадлежали Морису и с этим приходилось считаться. Выход был один поговорить с ним. [c.40]

    NH—СО— HR—, спираль образует правый винт. Широкое распространение а-спиральных структур среди синтетических полипептидов дает основание полагать, что такие спирали являются наиболее характерными и устойчивыми конфигурациями полипептидных цепей. Впоследствии это подтвердилось многочисленными физико-химическими исследованиями, в которых изучалась стабильность а-спиральной конфигурации полипептидов в самых различных условиях. Было обнаружено, что а-спираль стабильна в сравнительно широком диапазоне условий (pH, температура), а также в условиях, при которых многие белки остаются нативными. [c.540]

    Ш Третичная структура — реальная трехмерная конфигурация, возникающая при закручивании в спираль полипептидных цепей белков, происходящем под действием дисульфидных, водородных и иных связей. [c.258]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    Пространственная конфигурация полипептидной цепи, точнее тип полипептидной спирали, определяет вторичную структуру белка. Она представлена в основном а-спиралью, которая фиксирована водородными связями (стр. 45). [c.46]

    Рентгенографическим методом были определены межатомные расстояния и валентные углы в молекулах полипептидов и на этой основе построена пространственная модель белков. В 1951 г. Л. Полинг выдвинул в качестве модели пространственного строения белковой молекулы а-спираль , в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность цилиндра, причем звенья соседних витков соединяются между собой водородными связями между группами ЫН и СО. Это не единственная возможная конфигурация для белковых молекул. [c.344]

    Третичная структура белка — реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль полипептидной цепи. В простейших случаях третичную структуру можно представить как спираль, которая в свою очередь свернута спиралью. У такой структуры в пространстве имеются выступы и впадины с обращенными наружу функциональными группами. Третичной структурой объясняется специфичность белковой молекулы, ее биологическая активность. [c.352]

    Еще более важна ее роль во многих биологических процессах, так как водородные связи благодаря их незначительной прочности легче возникают и рвутся. Установлено, что определенные конфигурации полипептидных цепей в протеинах удерживаются прочно благодаря водородным связям они же обусловливают поперечные связи в двойных спиралях нуклеиновых кислот, что играет большую роль в механизме наследственности. [c.53]

    Благодаря исследованиям Л. Полинга наиболее вероятным типом строения глобулярных белков принято считать а-спираль (рис. 1.17). Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено Ь-аминокислотным составом природных белков. Движущей силой в возникновении а-спиралей (так же как и 3-структур) является способность аминокислот к образованию водородных связей. В структуре а-спиралей открыт ряд закономерностей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, а на один аминокислотный остаток приходится 0,15 нм. Угол подъема спирали 26°, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) а-спиральной структуры составляет 2,7 нм. [c.60]

    Два таких основных типа конфигурации белковых структур открыли и обосновали в сороковых годах двадцатого столетия Лайнус Полинг и Роберт Кори. При этом было установлено, что более высокоорганизованным типом конформаций полипептидных цепей является правовращающая а-спираль. Именно а-спиралъ - основной и широко-распростране(гнъгй тип вторичной стр)уктзры белков. Спираль может быть правой или левой, но более устойчивой являегся правая а-спираль. [c.270]

    По-видимому, возможны только две спиральные конфигурации полипептидных цепей, которые отвечают структурным требованиям и полученным экспериментальным данным. Эти структуры получили название а- и Y- спиралей (Паулинг). Имеются основания считать, что а-спираль представляет собой наиболее часто встречающуюся конфигурацию полипептидных цепей в белках. [c.46]

    В белках типа а-кератина, по имеющимся данным, полипептидные цепи, обладающие конфигурацией а-спиралей, по-видимому, скручены относительно друг друга так, как это показано на рис. 9. [c.46]

    В отличие от фибриллярных белков структура глобулярных белков до сих пор остается мало выясненной. Наиболее вероятно, что глобулярные белки, по крайней мере некоторые из них, содержат участки полипептидных цепей, имеющие конфигурацию а-спиралей. [c.46]

    Однако, оказалось, что в растворах белка спирализованная полипептидная цепочка может принимать ту или иную конфигурацию. Эта конфигурация полипептидной спирали в пространстве определяет ее третичную структуру. Другими словами, третичная структура показывает, как полипептидная цепь, свернутая целиком или частично в спираль, расположена или упакована в пространстве (в глобуле). [c.46]

    К этим принципам (копланарности и необходимости образования двух водородных связей на каждую пептидную группу) Полинг и Корей добавили еще принцип эквивалентности всех аминокислотных остатков в цепи (всякий аминокислотный остаток должен быть расположен по отношению к соседним и спирали в целом абсолютно идентично остальным). Базируясь на этих принципах, Полинг и Корей решили вопрос о пространственной конфигурации полипептидной цепи. Они предложили несколько моделей, одна из которых, так называемая а-спираль, наиболее полно отвечала большинству данных [34]. В одном витке этой [c.146]

    Третий порядок — конфигурация, возникающая в результате складывания или закручивания структур, соответствующих второму порядку. Четвертый порядок — объединение нескольких частиц с третичной структурой в одну более крупную частицу. Так, напр., полипептидная цепь (первичная структура) гемоглобина закручена в а-спираль (вторичная структура), спираль свернута в клубок (рис. 3) (третичная струк- [c.192]


    Вторичная структура. ПВторичной структурой наз. регулярную конфигурацию участков полипептидной цепи, получающуюся в результате определенного расположения остатков аминокислот друг относительно друга. Обнаружены и сравнительно хорошо изучены два типа вторичных структур свернутая в спираль полипептидная цепь (а-спираль) и растянутые параллельно расположенные участки цепи (плоские складчатые слои, или р-структура).  [c.121]

    Прогресс, достигнутый в ходе решения столь сложный проблемы, был, естественно, результатом усилий многих исследователей. Среди них — Лайнус Полинг (Калифорнийский технологический институт), получивший в 1954 г. Нобелевскую премию. В 1951 г. Полинг писал Четырнадцать лет назад профессор Р. Кори в я, предприняв очень энергичные, но безуспешные попытки решить задачу построения удовлетворительной модели конфигурации полипептидных цепей в белках, решили попытаться справиться с этой задачей косвенным методом, тщательно изучив кристаллы аминокислот, простых пептидов и родственных соединений для того, чтобы получить абсолютно надежные и подробные сведения о структурных характеристиках веществ подобного рода и в конце концов получить возможность уверенного предсказания точных конфигураций полипептидных цепей в белках [Re ord. hem. Prog., 12, 156—157 (1951)]. Эта работа на простых веществах, проводившаяся в течение более 14 лет, позволила в конце концов Полингу с сотрудниками предложить структуру, которая, вероятно, является важнейшей вторичной структурой в химии белков — а-спираль. [c.1057]

    Работа Крика [461 ] иллюстрирует большое сходство между различными моделями спиралей. Он показал, что л-спираль [1262] переходит в а-спираль, если при построении модели не предусмотреть образования одной из Н-связей. Крик полагает, что эта необразовавшаяся связь может перемещаться вдоль цепи подобно тому, как двигаются дырки в кристалле. В полипептидной цепи наиболее стабильная из всех возможных конфигураций, по-видимому, достигается за счет такого перемещения . В белках наличие сшивок и взаимодействий между боковыми цепями может обусловить стабильное существование в данной молекуле больше, чем одного типа спиралей. Линдлей [1236], пользуясь моделями и постулировав определенный гюрядок расположения остатков, показал, что включение пролина может повести к изгибу а-спирали на 180° или к изменению направления вращения. Некоторые важные Н-связи при этом не образуются, но включение групп боковой цепи в сетку Н-связей должно, по-видимому, сохранить стабильность конфигурации. Эти идеи, будучи проверены и развиты, могли бы быть полезными и для других структурных моделей. [c.268]

    ЛИ, которую играют в поддержании структуры те или иные связи, различают несколько структурных уровней. Первичная структура белка определяется числом и последовательностью ковалентно связанных аминокислот. Полипептидная цепь благодаря водородным связям, образующимся между кислородными атомами карбонильных групп и азотными атомами амидных групп, приобретает вторичную структуру она может образовать спиральную конфигурацию (а-спираль) или конфигурацию так называемого складчатого слоя. Третичной структурой называют определенное пространственное расположение пептидной цепи, обусловленное взаимодействием между различными ее боковыми группами. В поддержании третичной структуры участвуют другие водородные связи, ионные связи и неполярные (гидрофобные) взаимодействия. Поперечные связи, соединяюище различные участки полипептидной цепи, могут быть и ковалентными таковы, например, дисульфидные связи, образующиеся при окислении SH-rpynn. И наконец, благодаря взаимодействиям нескольких полипептидных цепей могут возникать надмолекулярные агрегаты. Такое строение (при котором белок состоит из определенного числа полипептидных цепей, или субъединиц) называют четвертичной структурой. При физиологических условиях белок находится в водной фазе. Поэтому между белками и диполями воды тоже имеет место взаимодействие. Полярные группы гидратированы. Факторы, вызывающие изменение заряда белков (концентрации ионов Н, Са , Mg , К и др.), неизбежно влияют также на степень гидратации, а тем самым и на степень набухания белков. [c.43]

    Если боковые аминокислотные цепи велики, то цепь приобретает конфигурацию, в которой водородные связи (>Ы—Н- 0=С<) замыкаются внутри самой полипептидной цепи (внутрицепные связи), образуя внутренние тринадцатичленные или семичлениые циклы. Структура, вероятно, представляет собой спираль. [c.323]

    В белках типа а-кератина (а-кератины, миозин, актомиозин, фибрин и др.) полипептидные цепи, имеющие конфигурацию а-спиралей, расположены непараллельно, а, по-видимому, скручены относительно друг друга так, как это показано на рис. 9 [c.46]

    Можно сравнить (Перуц) а-спираль с винтовой лестницей, в которой роль ступеней выполняют аминокислотные остатки. В таком случае на основании данных рентгеноструктурного анализа следует, что высота каждой ступеньки (соответствующая одному аминокислотному остатку) должна быть равна 1,5 А, высота одного оборота — 5,4 А, т. е. один оборот будет содержать 3,6 ступеньки (3,6 аминокислотных остатков) (рис. 8). Через 18 ступенек, или 5 оборотов, ступенька окажется точно по вертикали над исходной точкой. Это означает, что период повторяемости структуры, обнаруживаемый на рентгенограмме, должен быть равен 27 А (18 X 1,5), но из этого следует также, что через каждые 18 аминокислот структурная конфигурация полипептидной цепи повторяется. [c.45]

    В действительности реакции, подобные описанной выше, не идут самопроизвольно и для их осуществления в тканях живых существ требуется сложный механизм, включающий в себя большое количество ферментов. Аминокислоты, соединенные пептидными связями, образуют цепочки , носящие название полипептидов. Полипептиды представляют собой первичную структуру белка. В силу ряда термодинамических причин эти полипептидные цепочки стремятся принять спиральную конфигурацию. Спкральная конфигурация полипептидных цепей носит название вторичной структуры белка. В образовавшихся спиралях водород ЫН-груп-пы пептидной связи вступает во взаимодействие с кислородом С=0 группы пептидной связи соседнего витка. Образовавшаяся новая связь носит название водородной связи. [c.50]

    Водородные связи могут возникать как между отдельными полипептидными цепями, так и между звеньями одной цепи. Поскольку энергия Н-связи равна 1,4 ккал моль, то чем больше таких связей образуется внутри молекулы, тем ниже будет ее энергия и тем выше ее стабильность. Это приводит к тому, что полипёптидные цепи стремятся образовывать упорядоченные жесткие спирали с максимально возможным числом водородных связей. Такая упорядоченная спиральная структура полипептидной цепи, обусловленная внутримолекулярными водородными связями, называется вторичной структурой белков. Часто ее еще называют внутримолекулярной кристаллизацией, ибо такая, молекула действительно напоминает кристалл (наличие точки плавления для вторичной структуры, большая жесткость и упорядоченность). Однако упорядоченная спираль с внутримолекулярными водородными связями не является единственной конфигурацией полипептидных цепей белков. Наряду с ней известна структура, в которой вытянутые полипептидные цепи связаны друг с другом межмолекулярными (межцепочечными) водородными связями.  [c.91]

    Наконец, третья особенность этой конформации состоит в том, что боковые радикалы аминокислот обращены наружу. Не принимая непосредственного участия в построении углеродного скелета а-спирали, эти радикалы могут способствовать созданию напряжений, несовместимых со спиральной конфигурацией, и разрыву водородных связей, т. е. образованию аморфных участков. Поэтому структура а-спирали позволяет получить максимальную изменяемость белковой структуры и, следовательно, обеспечить исключительное разнообразие химической специфичности белков. Расположение боковых радикалов аминокислот весьма существенно и с другой точки зрения. Если мы представим себе а-спи-раль, построенную из природных -аминокислот (рис. 19), то при 1шправлении вращения слева направо (правая спираль) все боковые цепи будут располагаться вдоль оси от С-конца к Ы-коп-цу, т. е. в направлении, обратном направлению полипептидной цепи. Если же спираль левая, то боковые радикалы будут направлены вдоль оси по направлению полипептидной цепи. Так как на каждый виток спирали приходится 3,6 таких радикалов, то их упаковка и взаимодействие для каждого типа спирали будут совершенно различны. При этом необходимо учесть, что именно это взаимодействие и определяет выбор направления вращения спирали. К сожалению, теория Полинга и Крика не. может ничего сказать о том, каково должно быть это направление, поскольку для построения модели оно совершенно безразлично. Для большинства исследованных полипептидов оказалось, что природные аминокислоты образуют правые спирали они же были обнаружены и в ряде белков. [c.98]

    При анализе ряда глобулярных белков было установлено, что они имеют в растворе весьма компактные формы, размеры которых не сравнимы по величине с размерами, ожидаемыми для стержнеобразных а-спиралей сходного молекулярного веса. Гидродинамические данные и результаты светорассеяния указывают также, что пространственная конфигурация у белков этого класса более компактна, чем у беспорядочных клубков. Чтобы объяснить это кажущееся несоответствие, необходимо допустить, что молекулы глобулярных белков представляют собой сверхклубки , состоящие из коротких спиральных сегментов, разделяемых неспиральными зонами. Последние наделяют полипептидные цепи достаточной гибкостью, чтобы они могли свернуться в компактную глобулу, которая стабилизируется различного рода вторичными связями. Следовательно, в молекуле белка мы имеем как спиральные, так и аморфные участки. Что же касается синтетичесАх полипептидов, то здесь, как уже говорилось, конформация полипептидной цепи зависит от природы растворителя в одних вторичная структура этих соединений представлена спиральной формой, в других— беспорядочным клубком. Каким образом можно различить эти два типа вторичной структуры  [c.101]

    Нам уже известно, что полипептидная цепь лишь крайне редко бывает вытянутой. Чаще всего она скручена в а-спираль и, сверх того, еще многократно свернута, разветвлена, изогнута и т. д. Легко представить себе, что благодаря этим складкам и изгибам возникают самые различные формы поверхностей. Так создаются субстратспецифичные поверхности ферментных молекул — мы подробно говорили об этом в первой главе. Так же возникают и антиген-специфичные поверхности белковых молекул они в точности соответствуют (т. е. комплементарны) детерминантной группе — как ключ соответствует замку. Возможности создания различных конфигураций, очевидно, чрезвычайно велики, тем более что в образовании одного центра связывания, вероятнее всего, участвуют две полипептидные цепи — одна легкая и одна тяжелая обе цепи могут к тому же еще сдвигаться од-Рис. 165. Модели молекулы антитела на относительно другой, благодаря (коричневые), состоящего из 4 субъеди- чему ОПЯТЬ-таки возникают новые ниц. Молекула антитела имеет два цент- формы, ра связывания, специфичных в отноше-  [c.338]

    Вопрос, на который теория Полинга—Кори не давала ответа, заключался в том, каково должно быть направление вращения спирали. Для рассмотренной модели кажется безразлично, выбрать ли правые или левые спирали. Одпако, если учесть левую конфигурацию природных аминокислот и наличие в них боковых групп, то станет яспо, что выбор нанравленпя вращения спирали небезразличен. Дело в том, что боковые радикалы К, которые всегда расположены вне спирали Полинга—Кори, будут располагаться вдоль оси в направлении, обратном направлению полп-пептидной цепи, если все аминокислоты 1-конфигурацни. а спираль правая (рис. 8). Направление цепи мы условно выбираем от К-конца к С-концу. С другой стороны, если из природных аминокислот построить левую спираль, то боковые группы аминокислот будут направлены вдоль осп по направлению полипептидной цепи. Так как спираль сложна и содержит 3,6 боковых групп на виток, то упаковка боковых радикалов и их взаимодействие будут различными в обеих структурах. Ясно, что выбор между правым и левым направлением спирали определяется как раз этим ваидерваальсовым взаимодействием боковых групп. [c.45]

    Белки, структура молекулы. В структурной организации молекул выделяют четыре уровня первичная, вторичная, третичная и четвертичная структуры. Первичная структура — это последовательность аминокислот в полипептидной цепи. Первичная структура дает представление лишь о расположении полипептидной цепи на плоскости. Вторичная структура показывает пространственную конфигурацию, которой обладает полипептидная цепь. Наиболее частыми вариантами вторичной структуры являются а-спираль и р-складчатая структура. Под третичной структурой понимают способ укладки полипептидной цепи в компактную, плотную структуру. Компактную структуру молекулы образуют как спирализованные, так и аморфные участки полипептидной цепи. Четвертичная структура характеризует способ объединения в одну функционально индивидуальную молекулу нескольких полипептидных цепей (протомеров). Термин счетвертичная структура белка тесно связан с термином солигомерный белок . [c.16]

    Альфа-спираль Полинга — Корея, таким образом, дала решение вопроса о вторичной структуре белковых молекул. Но необходимо отметить, что это были чисто расчетные построения точных, прямых экспериментальных доказательств, несмотря на всю убедительность теоретической базы, в течение некоторого времени получено не было. В пользу этой теории говорили только опыты с синтетическими полиаминокислотами, проведенные Бамфор-дом с сотрудниками, в которых была доказана а-спиральная структура у нескольких синтетических полипептидов (см. [34]). Кроме этого, сторонники а-спиральных конфигураций белковых молекул обладали лишь косвенными рентгеноструктурными данными, свидетельствующими в пользу а-спирали, полученными на фибриллярных белках (например, из игл дикобраза). Но несмотря на это, гипотеза стремительно раопространялаеь и находила все большее и большее число сторонников из-за того, что она позволила объяснить и систематизировать многочисленные факты, связей между которыми раньше установить не удавалось, например денатурация белков и др. При помощи определенных методов дейтеро-водородного обмена получены многочисленные качественные характеристики числа водородных связей в спиралях, термодинамических переходов, происходящих при деспира-лизации полипептидной цепи и некоторые другие данные. Все они очень хорошо укладывались в рамки теории Полинга — Корея. И все же это были лишь косвенные доказательства, но несмотря на это, представление об а-спирали, как основной конфигурации полипептидных цепей, общей для всех белков, получило повсеместное признание. Переломным годом в распространении признания наличия а-спиралей в белках необходимо считать 1952 г. Д. Кендрью на Конференции по структуре белка в Пасадене в 1953 г. сказал Нельзя сказать, что в мае 1952 г. спираль была основой наших представлений о структуре белка. В самом деле, тогда имелись серьезные разногласия по вопросу о существовании спиральных цепей. Конференция в Пасадене показала, что спиральная структура вступила в свои права... Из обсуждения, имевшего место на Конференции, можно было заключить, что а-спираль является основной конфигурацией цепи, имеющейся в а-полипептидах (см. [150]). [c.147]


Смотреть страницы где упоминается термин Полипептидная цепь конфигурация спирали: [c.421]    [c.69]    [c.183]    [c.125]    [c.121]    [c.122]    [c.183]    [c.313]    [c.314]    [c.47]    [c.192]    [c.322]    [c.183]    [c.4]    [c.359]    [c.192]   
Общая химия (1964) -- [ c.488 , c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Конфигурация цепи

Полипептидные цепи



© 2025 chem21.info Реклама на сайте