Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Повышение эффективности процесса фотосинтеза

    Повышение эффективности процесса фотосинтеза [c.150]

    Повышение цен на традиционные источники энергии (природный газ, нефть, уголь) и угроза их исчерпания побудили ученых обратиться к альтернативным путям получения энергии. Роль биотехнологии в создании экономичных возобновляемых энергетических источников (спиртов, биогенных углеводородов, водорода) чрезвычайно велика. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельскохозяйственного производства. Перспективно продолжение исследований по усовершенствованию и внедрению процессов производства метана, этанола, созданию на основе микроорганизмов (и ферментов) элементов, эффективно производящих электричество, а также по организации искусственного фотосинтеза, в частности биофотолиза воды, при котором можно получать богатые энергией водород и кислород. [c.204]


    Совершенно очевидно, что один из наиболее перспективных методов крупномасштабного преобразования солнечной энергии основан на использовании биосистем. Широкое применение биосистем для получения энергии способно обеспечить свыше 15 % производства энергии для экономически развитых стран. В последние 10—15 лет намечены новые пути биотрансформации солнечной энергии при фотосинтезе. Установлено, что некоторые микробиологические системы характеризуются высокой эффективностью фотосинтеза. Так, фоторазложение воды, осуществляемое суспензией хлореллы с образованием кислорода, в оптимальных условиях культивирования дает 130—140 л газа с 1 м освещаемой поверхности в сутки. Известно, что одна из особенностей процесса фотосинтеза — уменьшение эффективности преобразования солнечной энергии при высоких значениях интенсивности света. Новые технологии позволяют повысить эффективность фотосинтеза при высокой интенсивности света. Разрабатываются системы, эффективно поглощающие световой поток и обогащенные реакционными центрами по отношению к пигменту. Световые кривые фотосинтеза улучшаются также с увеличением скорости лимитирующей стадии электронного транспорта. Например, проведение процесса при повышенных температурах в системах термофильных микроорганизмов увеличивает эффективность преобразования солнечной энергии при высокой интенсивности света. [c.26]

    Изучение процесса фотосинтеза представляет исключительно большой интерес. Подсчитано, что растениями используется около 1 % солнечной энергии, достигающей поверхности нашей планеты. Остальная масса (99%) солнечной энергии, достигающей поверхности земли, остается неиспользованной. Годовая продукция органических соединений, возникающих в результате фотосинтеза, оценивается примерно в 2-10 т, и она обеспечивает потребность людей и животных в пище. Легко понять, что повышение эффективности нслользования световой энергии солнца должно привести к колоссальному повышению синтеза органических веществ в растениях, к повышению урожайности сельскохозяйственных культур. [c.234]

    Изучение физической и коллоидной химии дает возможность получить более глубокие знания об окружающем мире и, в частности, позволяет на более высоком уровне решать проблемы, связанные с развитием научных основ ведения сельского хозяйства. Физико-химический подход позволяет понимать процессы, идущие в такой сложной системе, как почва, улучшать производство новых удобрений, внедрять более эффективные методы разработки и вводить химические средства борьбы с вредителями и болезнями растений. Исследования фотохимических реакций, столь блестяще начатые К- А. Тимирязевым, позволяют глубже понять сущность сложных процессов фотосинтеза. Исследование почвенных коллоидов — необходимое условие повышения плодородия. [c.7]


    Для очистки сточных вод служат также окислительные пруды. Это естественные или искусственные неглубокие водоемы, в которых осуществляется деструкция органических веществ аналогично процессам самоочищения в природных водах. Очистные пруды могут быть обычными и с искусственной аэрацией. В не-аэрируемых прудах окисление органических загрязнений микроорганизмами происходит за счет растворенного в воде кислорода. Их малая глубина способствует хорошему прогреванию и освещенности воды солнечными лучами, в результате чего интенсивно развиваются планктонные водоросли и донные высшие растения. Растительные организмы питаются неорганическими продуктами микробного метаболизма и, в свою очередь, снабжают микроорганизмы кислородом, образующимся в процессе фотосинтеза. В последние годы водорослям отводится важная роль в процессах самоочищения водоемов, а в ряде стран проводятся исследования по выращиванию на сточиых водах водорослей родов lorella и S enedesmus с целью получения кормового белка и биологически активных веществ [35]. Аэрируемые пруды в 5 — 10 раз эффективнее обычных. Повышение количества растворенного в воде кислорода достигается с помощью механических аэрирующих устройств. [c.116]

    Несмотря на такое сравнительно небольшое содержание СО, в воздухе, роль этого газа в биологических процессах очень велика. Так, СО2 — одно из важнейших исходных веществ фотосинтеза в растениях — процесса, имеющего исключительно большое значение для всей жизни на Земле. Даже небольшое повышение содержания СОп в воздухе повышает эффективность фотосинтеза и способствует увеличению урожайности сельскохозяйственных культур. В технике используют СО2, получающийся при обжиге известняка (СаСОз = = СаО + СО2). [c.418]

    Действительно известно, что начальные перестройки в физиологии целого организма (соотношение процессов транспирации, фотосинтеза, водного обмена и др.) в экстремальных условиях проявляются по-разному в зависимости от конкретного воздействия. О том же говорят наблюдения на клеточном уровне (Семихатова, 1990). Анализ реакции дыхательного аппарата клетки на изменение экологической обстановки показывает, что общий уровень дыхания, цианид-резистентное поглощение 0 , энергетическая эффективность дыхания изменяится в неодинаковой степени при повышении и понижении тешературы, засолении и водном дес шщте. [c.112]

    Калий способствует конверсии солнечной энергии в АТФ, участвует в переносе энергии в клетке и синтезе высокомолекулярных соединений (белков, полисахаридов), что способствует повышению эффективности фотосинтеза. Ускорение потока энергии происходит благодаря активации калием ферментативных реакций, которые катализируют перенос богатых эиергнеи фосфорных связей. Он непосредственно влияет па синтез, обмен аминокислот и полимеризацию более высокомолекулярных соединений (белков, нуклеиновых кнслот и нуклеотидов). Относительно высокая внутриклеточная концентрация ионов калия необходима по крайней мере для двух процессов, имеющих жи н-ненно важное значение для клетки для синтеза белка рибосомами и для гликолиза, при котором иоиы калия служат активаторами пируваткнназы (А, Ленинджер). [c.291]

    Вполне вероятно, что повышение Ухоз. может быть достигнуто в результате агротехнических мероприятий, проводимых на последних фазах развития и направленных на повышение интенсивности фотосинтеза колосьев (а не только верхних листьев) и эффективности использования образующихся в них ассимилятов в процессах налива зерна. [c.289]


Смотреть страницы где упоминается термин Повышение эффективности процесса фотосинтеза: [c.95]    [c.47]    [c.178]    [c.47]    [c.229]    [c.471]   
Смотреть главы в:

Основы биотехнологии -> Повышение эффективности процесса фотосинтеза




ПОИСК





Смотрите так же термины и статьи:

Повышение эффективности фотосинтеза

Процесс эффективности

Фотосинтез

Фотосинтез эффективность



© 2025 chem21.info Реклама на сайте