Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции новые пути

    Однако удобнее органические реакции классифицировать по их механизмам. Под механизмом химической реакции понимают путь, который приводит к разрыву старой химической связи и образованию новой. Чтобы установить, как протекает этот процесс, необходимо представить все последовательные состояния, через которые проходит система реагирующая молекула — реагент . При этом необходимо учитывать не только образование конечных продуктов реакции, но и промежуточных, а также влияние изменения условий на протекание реакции. Рассмотрим наиболее простой случай химической реакции — реакцию замещения. Эта реакция сопровождается разрывом ординарных связей (сг-связей) и образованием новых с заменой одной атомной группировки на другую. В зависимости от характера атакующего реагента и природы связей в реагирующей молекуле разрыв а-связи может протекать по двум основным механизмам  [c.24]


    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]

    Из химической кинетики известно, что скорость последовательной реакции определяется скоростью наиболее медленной из ее последовательных стадий, а из ряда параллельных путей наиболее вероятен путь с наименьшими торможениями. Эти же представления справедливы в случае электрохимических процессов. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса, т. е. с наиболее замедленной стадией. Появление нового пути, обеспечивающего протекание реакции с большей скоростью, способно снижать электродный потенциал, который в отдельных случаях, например при изменении характера электродного процесса, может оказаться даже меньшим, чем обратимый потенциал. Это уменьшение электродного потенциала и процесс, обусловливающий его, называется деполяризацией. [c.292]

    Формальной кинетикой называется раздел химической кинетики, в котором рассматривается количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентрации реагирующих веществ. Знание кинетических характеристик химических процессов имеет большое практическое и теоретическое значение, так как позволяет рассчитывать реакторы и различную химическую аппаратуру и находить наиболее общие методы выяснения механизма реакции, открывая пути для сознательного управления и совершенствования существующих и создания новых технологических процессов. [c.309]


    Проточные реакторы. Большинство современных промышленных процессов проводится в непрерывно действующих проточных реакторах. Такой реактор представляет собой открытую систему, взаимодействующую с внешней средой в аппарат непрерывно подаются исходные вещества и отводятся продукты реакции и выделяющееся тепло. На показатели работы реактора влияют, наряду с химической кинетикой и макрокинетикой процесса, новые, специфические факторы конвективный поток реагентов и теплообмен с внешней средой. Расчет и теоретический анализ работы реактора с учетом взаимодействия и взаимного влияния всех этих факторов — далеко не простое дело. Число параметров и переменных, необходимых для точного расчета, в практически важных случаях может быть чрезвычайно большим и превосходить возможности даже самых быстродействующих вычислительных машин. Дополнительную сложность вносят типичные для крупномасштабных систем явления статистической неупорядоченности и случайного разброса характеристик процесса. Эти явления нельзя рассматривать как внешнюю, досадную помеху они связаны с самой природой процесса и должны обязательно приниматься во внимание при анализе его работы. Непременным залогом успеха при расчете промышленных химических реакторов является предварительный анализ основных факторов, влияющих на процесс в данных условиях. Только таким путем можно выделить основные связи из сложной и запутанной картины взаимодействия различных процессов переноса и химической реакции, не отягощая расчет излишними и зачастую обманчивыми уточнениями и в то же время не упуская из виду существенных, хотя, может быть, и трудных для анализа, действующих факторов. [c.203]

    Научное значение реакции сульфоокисления очень велико сделанные при ее изучении открытия и накопленные знания пока еще нельзя полностью оценить по своему влиянию на всю область реакций замещения парафиновых углеводородов. Эта реакция, открывающая новые пути в химической технологии, способствовала техническому прогрессу и производстве синтетических моюпщх веществ в виде натровых солей высокомолекулярных алифатических сульфокислот. [c.482]

    Для возрастания скорости реакции нужно увеличить число активных молекул, что достигается . повышением 1 (увеличивается число молекул, обладающих большей энергией, чем средняя энергия молекул, участвующих в реакции) и добавлением катализатора (снижается энергия активации). Скорость химической реакции зависит, как известно, от присутствия веществ-катализаторов. Катализатор резко увеличивает скорость реакции и тем самым способствует осуществлению реакции, которая термодинамически возможна, но в отсутствие катализатора не происходит . Воздействие катализатора на химическую реакцию осуществляется путем промежуточного взаимодействия его с реагирующими веществами. С помощью положительного катализатора энергия активации понижается, и молекулы, обладающие меньшим запасом энергии, становятся реакционноспособными. Промежуточное взаимодействие с положительным катализатором открывает возможность нового реакционного пути, по которому данная реакция протекает с большей скоростью, чем без -катализатора. Если катализатор отрицательный, его присутствие замедляет или практически полностью. подавляет один из возмож.ных путей течения химической реакции. Подобная избирательность (селек- [c.272]

    Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ. В присутствии катализатора изменяется путь, по которому проходит суммарная реакция, а потому изменяется ее скорость.Катализаторы—это вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав. Увеличение скорости катализируемой реакции связано с меньшей энергией активации нового пути реакции.  [c.204]

    Как это видно из формул (1.1) и (1.2), ускорение химической реакции в принципе может быть достигнуто путем либо снижения величины Е, либо увеличения AS. Каталитическое ускорение реакций идет, видимо, большей частью по пути снижения Е. Снижение энергии активации под действием катализатора в общем случае является следствием образования иных промежуточных соединений и активированных комплексов и соответственно изменения формы поверхности потенциальной энергии, благодаря чему открывается новый путь реакции, проходящий через перевалы меньшей высоты. [c.11]

    В настоящее время происходит интенсивное накопление экспериментальных данных о термодинамических свойствах различных веществ и термодинамических параметрах химических реакций. Это приводит к качественно новым возможностям — на основе справочных данных расчетным путем определять положение равновесия, тепловые эффекты и другие термодинамические параметры для большого числа реакций, не прибегая к непосредственному экспериментальному определению этих величин, которое обычно бывает гораздо более трудоемким, более длительным и даже не всегда доступным. Особенно важно, что такие расчеты позволяют дать сравнительную оценку и найти оптимальные условия проведения реакции. [c.6]


    При соответствующих условиях различные вещества могут претерпевать превращения, давая определенные химические соединения. Если превращение совершается путем перегруппировки или перераспределения атомов с образованием новых молекул, мы говорим, что произошла химическая реакция. Исследованием таких реакций занимается химия. Она изучает природу реакционной способности химических веществ, механизм реакции и сопровождающие их физические и энергетические изменения продукты, полученные из исходных веществ, и, наконец, скорость образования этих конечных продуктов. [c.21]

    Образование ориентированных слоев играет также большую роль в процессах прилипания и склеивания. В этих процессах связующее вещество должно вначале быть жидким (для заполнения впадин и повышения фактической площади контакта) и затвердевать в процессах схватывания, посредством замерзания (лед), химических реакций окисления (лаки), гидратации (цемент), полимеризации (клеи) и др. Склеивание полимерных материалов осуществляется путем взаимной диффузии сегментов полимерных цепей. Силы адгезии между твердой поверхностью и затвердевшим клеем или пленкой, согласно представлениям, развитым Дерягиным, имеют во многих случаях (например, при взаимодействии металлов с полимерами) электрическую природу и определяются величиной Аф, возникающей при ориентации молекул в поверхностном слое. Поэтому при разработке новых склеивающих материалов и пленочных покрытий, широко используемых в современной технике, особое внимание следует уделять способности этих веществ к образованию ориентированных слоев. Для повышения этой способности разрабатываются специальные полярные присадки. [c.119]

    Затрагиваемая автором проблема знаний об опасностях, реализуемых при авариях современных промышленных предприятий, и умения грамотно действовать при защите населения и персонала, ликвидации их последствий актуальна и для нашей страны. Сущность проблемы заключается в том, что в условиях вовлечения в хозяйственную деятельность тысяч новых веществ, постоянной смены технологий такие знания (и разрабатываемую на их основе тактику действий в экстремальных ситуациях) можно получить путем лишь научных исследований, но не на основе чисто практического опыта. В качестве примеров для разбираемого в этой главе класса аварий -крупных пожаров укажем лишь на такие опасности (помимо отмеченных автором опасностей технологии сжиженных газов), как формирование огневых шаров жидких углеводородных топлив при вскипании продукта в резервуаре хранения при его горении (время возникновения - от 7 мин до 2 ч после воспламенения, поражаемая площадь - до 10 тыс. м ) усиление воздушных ударных волн, проходящих над горящими разлитиями топлив (коэффициент усиления от 2 до 10) развитие в ходе крупного пожара неконтролируемых химических реакций с образованием токсичных веществ (возможен широкий спектр поражающего действия). Каждое из отмеченных явлений для организации эффективного противодействия требует экспериментального и теоретического изучения, целенаправленного обучения личного состава и оснащения подразделений специальной техникой, прежде всего диагностической. Пока что и крупные аварии (например, авария 26 апреля 1986 г. на Чернобыльской АЭС), и более мелкие происшествия (например, авария 26 февраля 1988 г. в Чимкенте) свидетельствуют о нерешенности перечисленных вопросов. - Прим. ред. [c.208]

    Щ не существует никаких дополнительных условий. Важнейшим случаем, в котором это предположение не выполняется, является химическая реакция, для которой изменение числа молей определяется стехиометриче-скими соотношениями, следующими из уравнения реакции. Формально аналогичные соотношения могут появляться также между другими переменными состояния. Во всех случаях такого рода можно, как показано в 16 и 17, предложить два пути. Первый путь заключается в том, что вводят соответствующий внутренний параметр. Экстенсивный параметр, связанный через дополнительные условия, не появляется больше в дополнительных условиях, и возникает экстремальная задача, при которой изменение внутреннего параметра ограничено лишь оставшимися дополнительными условиями (например, в случае химической реакции постоянство температуры, давления и числа молей компонентов, которые не принимают участия в реакции). Другой метод состоит в том, что не уменьшают числа переменных (следовательно, в случае химической реакции числа молей всех участников реакции в фундаментальном уравнении сохраняются), однако для экстремальной задачи вводят новые побочные условия, следующие из дополнительных соотношений. Приведенный выше вывод таким обобщением не нарушается. Но так как общая формулировка для таких случаев нецелесообразна, оставим обсуждение химических реакций до 33 и 36. [c.117]

    Закон Гесса и следствия, вытекающего из него, как было показано выше, позволяют легко рассчитать теплоту практически любой химической реакции при наличии данных по теплотам сгорания или образования из простых веществ участвующих в реакции соединений. В настоящее время экспериментально установлены теплоты сгорания и теплоты образования очень многих, но далеко не всех химических соединений. Число экспериментальных термохимических работ из года в год резко увеличивается, но в еще большей мере растет потребность в термохимических данных для новых производств и для решения других вопросов. Нереально поэтому ожидать, что в будущем развитие экспериментальных работ сумеет полностью удовлетворить потребность в термохимических данных, и большие надежды приходится возлагать на расчетные методы последние дадут возможность, основываясь на небольшом числе полученных опытным путем надежных данных, рассчитать эти данные для других соединений того же класса. В развитии таких методов в настоящее время достигнуты значительные успехи. Кратко ознакомимся с ними. [c.23]

    Изучение дейтерированных соединений дает богатый материал для выяснения механизма химических реакций. При помощи этих соединений часто могут быть однозначно решены или по-новому освещены такие вопросы, которые раньше не могли быть выяснены экспериментальным путем. Некоторыми примерами подобного рода мы и закончим краткое рассмотрение органических соединений с тяжелым водородом. [c.1147]

    Таким образом, появление в системе атомов С1 приводит к возникновению нового пути осуществления превращения (11.17), более сложного, чем прямое превращение, но зато неизмеримо более быстрого. Отсюда видно, что в зависимости от пути, по которому идет превращение, один и тот же процесс может идти либо неизмеримо медленно, либо со взрывной скоростью. Реакции (11.18) — (11.20) можно рассматривать как отдельные стадии сложного химического процесса. Совокупность стадий сложного процесса называют механизмом химического процесса. [c.173]

    Во-вторых, реакция с участием одного компонента или двух компонентов, реагирующих в соотношении 1 1, может оказаться сложной, если прямое превращение связано с преодолением высокого энергетического барьера и существует другой путь с существенно более низким барьером. Новый путь может возникнуть лишь при появлении новых частиц, а низкий барьер на этом новом пути означает, что эти частицы легко вступают в реакцию, т. е. химически активны. Поэтому многие процессы, описываемые простым стехиометрическим уравнением, являются сложными, поскольку протекают не путем прямого взаимодействия между молекулами исходных веществ, а с помощью активных промежуточных частиц. В этой главе рассматриваются основные типы механизмов таких реакций. [c.303]

    Основной принцип нового направления масштабного перехода, сформулированный Боресковым и Слинько [37], заключается в осуществлении ряда процедур 1) в дифференциации единого сложного химико-технологического процесса на отдельные уровни и относительно самостоятельные разнородные явления, к каковым относятся все химические процессы, выраженные кинетикой химических превращений, и все физические процессы — перенос массы и теплоты, движение потоков 2) в установлении первичных закономерностей процесса путем раздельного изучения скоростей химических реакций и физических факторов 3) в установлении их взаимосвязи как элементов на каждом уровне 4) в последующем синтезе всей информации посредством общей математической модели по иерархическому принципу из моделей отдельных частей сложного процесса. [c.161]

    В гомогенных системах реакция идет во всем реакционном объеме, так как мы называем гомогенной именно систему, имеющую одинаковый химический состав во всех ее участках. В гетерогенных системах химический состав фаз различен, и реакция осуществляется на границе раздела фаз. Поэтому кинетика взаимодействия определяется не только кинетикой собственно химической реакции — кинетикой образования нового вещества, но и скоростью транспорта реагентов в зону реакции и сквозь зону. Этот транспорт осуществляется путем диффузии вещества как внутри объема контактирующих фаз, так и сквозь слой образующегося вещества. [c.227]

    На протяжении всей истории человечества люди п0(лоянно ()асширяли набор имеющихся в их распоряжении материалов. Снйчал.) это происходило случайно, затем при помощи науки. Мы научились изменять свойства веществ как путем физического смешивания, так и с помощ 1Ю химических реакций между ними. Иногда необходимы только небольшие изменения свойств индивидуальных веществ. А иногда химикам приходится создавать новые материалы, которые по свойствам ничего общего не имеют с исходными веществами. [c.132]

    Данная химическая реакция осуществляется путем перехода от молекулярного состояния исходных веществ к ионному и снова к молекулярному. При этом имеет место повторение иервоначального (молекулярного) состояния, но на иной качественной основе, сохранение в составе конечных продуктов некоторых элементов и характера связей (ионная) исходных реагентов, т. е. отрицание совершалось как бы дважды. Однако в дейст ви-тельности это лишь одно звено цепи всех возможных превращений веществ, участвующих в данном процессе развития (от низшего к высшему) спиралевидность при этом еще не выступает. Спиралевидность развития, выражающую действие закона отрицания отрицания, можно проследить только на длинной цепи последовательно следующих друг за другом качественных превращений, когда они связаны с усложнением и повторяемостью тех или иных свойств на новой, более высокой основе. [c.206]

    В химических процессах переработка нефтяного сырья осущес — твляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных НПЗ, подразделяются по способу активации химических реакций — на термические и термо —катали— "ические по типу протекающих в них химических превращений — на [c.92]

    Чтобы можно было применить модель и ири описании химических реакций, необходимо ввести второй параметр — эффективную продолжительность столкновения. В моделях прямоугольной ямы и центральных сил это происходит автоматически как следствие того, что молекулы взаимодействуют в некотором интервале расстояний. Однако обе эти модели гораздо сложнее модели жесткого шара. Поэтому, чтобы сохранить эту модель, надо ввести в нее новый параметр Оа— эффективный диаметр химического взаимодействия, сохранив в качестве диаметра жесткой оболочки. Если центры двух и дентичных молекул находятся друг от друга на расстоянии, меньшем или равном то между ними может происходить химическая реакция. После того как молекулы сблизятся до расстояния а , они начнут двигаться в противопо,тгожные стороны, так что молекулы будут находиться в состоянии химического столкновения то время, нока они проходят путь, равный 2 аа— сг ). Эффективный реакционный объем , таким образом, равен п а1 — aj )/6. [c.144]

    Вопрос о том, каки1м путем протекает химическая реакция, или, как теперь принято говорить, каков механизм реакции, — не нов, он был поставлен 80 лет назад в работах Вант-Гоффа и Аррениуса [216, 217]. Универсальный характер этой проблемы, ее необычайная теоретическая и практическая важность привели тому, что раздел физической химии, в котором изучаются законы химического превращения, выделился в самостоятельную науку, называемую химической кинетикой. При разрешении тех или иных задач в применении химической кинетики нуждаются теперь неорганическая, органическая, аналитическая и другие области химии. При помощи химической кинетики, соединенной с разнообразными физико-химическими методами исследований, удалось установить, что большинство химических рейк-ций протекает сложно — через ряд стадий, во время которых образуются промежуточные, неустойчивые химические формы, и число их часто бывает велико (цепные реакции, каталитические реакции и вообще циклические химические процессы).  [c.160]

    Исследования различных типов химических реакций в условиях течения и взаимодействия закрученных газовых потоков показали возможность их интенсификации за счет использования различных свойств закрученных потоков. Путем рационального конструирования на базе знаний особенностей гидро- и термодинамики течения таких потоков можно решать задачи, связанные как с необходимостью создания условий для интенсивного перемешивания газовых, газопылевых или газожидкостных компонентов, так и с требованиями максимального снижения турбулиза-ции реагентов. В рассмотренных примерах в основном использованы особенности струйного течения газовых потоков и наличие поля центробежных сил. Однако возможно использование и эффекта температурного разделения газа на холодную и горячую составляющие, образование противотока. Эти особенности течения высокоскоростных закрученных потоков могут быть использованы для проведения реакций, требующих малого времени контактирования реагентов и быстрого нафева или охлаждения продуктов реакции, быстрого отвода их из зоны реакции. Многообразие тепловых, гидродинамических и структурных форм закрученных газовых потоков открывает широкие перспективы не только для совершенствования известных конструкций реакционных аппаратов, но и для создания принципиально новых технических решений применительно к различным областям народного хозяйства. [c.321]

    Интересным и важным для развернувшейся уже в 50-х годах дискуссии о роли и значении холодного пламени в общем процессе низкотемпературного окисления является отмеченный Поупом, Дикстра и Эдгаром факт осуществления найденного ими соотношения (02израсх= 1 + СО -]-+ 1,5С02) при окислении всех изученных октанов, вне зависимости от наличия или отсутствия у данного изомера холодпопламеиной реакции. Это соотношение между расходом кислорода и образованием конечных продуктов окисления — окислов углерода, несомненно, связано с механизмом процесса. Поэтому, если холодное иламя представляет собой серьезное качественное изменение реакции с появлением новых путей химического превращения, то естественно ожидать, что найденное авторами соотношение между кислородом и окислами углерода не будет оставаться одним и тем же как для холоднонламенного, так и для лишенного холодных пламен медленного окисления. [c.40]

    По Нейману, кинетический механизм первых двух стадий холоднопламенного окисления углеводорода одинаков и представляет собой вырожденно-разветвленную цепную реакцию, химическое же содержание этих стадий различно. Последнее следует хотя бы из факта различной природы органических перекисей, образующихся в периоде индукции и в холоднопламенной вспышке (см. стр. 173). Таким образом, в трактовке Неймана холоднопламенная вспышка не представляет собой дальнейшего увеличения скорости химического процесса, который начался и протекал в периоде индукции. Напротив, возникновение холодного пламени знаменует собой изменение химизма реакции, протекавшей в период индукции, и переход ее на пной путь химического превращения. Эта новая, качественно иная химическая реакция происходит в холодном пламени в несравненно больших масштабах, чем реакция периода индукции. В результате химическое превращение, реализуемое в холодном пламени, является центральной стадией, основной частью всего процесса холоднопламенного окисления. Наконец, третья, последняя стадия холоднонламенного окисления характеризуется образованием главным образом конечных продуктов (СО, СО2, Н2О) и, следовательно, являясь в основном догоранием промежуточных веществ, созданных холодным пламенем, с химической точки зрения отлична от первой и второй стадий. [c.174]

    На стыке молекулярной биологии с физической и физико-органической химией возникла еще одна не менее важная задача — создать сравнительно простые каталитические системы, в которых использовали< ь бы принципы действия активных центров, работающих в ферментах. Подобного рода исследования обогащают физико-органическую химию познанием нетрадиционцых путей (механизмов), позволяющих ускорять или в общем случае регулировать скорости химических реакций. Изучение механизмов молекулярной биологии, в частности движущих сил ферментативного катализа, поможет найти пути создания избирательных химических катализаторов с управляемыми свойствами [7, 8]. В то же время анализ как общих закономерностей, так и различий, наблюдаемых в ферментативных и модельных системах, можно рассматривать как качественно новую ступень углубленного изучения самих ферментов. Иными словами, подобного рода исследования в области молекулярной химической бионики должны способствовать формированию новых взглядов на природу ферментативного катализа. [c.3]

    Этот же процесс идет и на пограничной кривой ид. Если путь кристаллизации расплава попадет на пограничную кривую иО, то будет происходить не одновременное выделение кристаллов А и АгпВп, а растворение кристаллов А и образование АтВп- В этом отношении пограничная кривая иО резко отличается от рассмотренных ранее. В связи с этим пограничные кривые делятся на два типа конгруэнтные, вдоль которых при охлаждении одновременно выделяются две твердые фазы, и инконгруэнтные, вдоль которых протекает химическая реакция между ранее выделившимися кристаллами и остаточной жидкой фазой с образованием нового вещества. Однако независимо от типа на пограничной кривой всегда будут в равновесии с жидкостью две твердые фазы. Направление [c.78]

    Сведения о зависимости скорости химической реакции от концентраций, температуры и давления находят широкое практическое применение. Например, такими сведениями необходимо располагать при проектировании химического завода. Чтобы знать, как ведет себя какой-нибудь химический загрязнитель, скажем гербицид (средство для борьбы с сорняками), в окружающей среде, нужно иметь сведения о том, в какие реакции он может вступать в природных условиях и с какой скоростью протекают эти реакции. Но изучение кинетики химических реакций помимо таких практических целей преследует и более фундаментальные задачи. Знание уравнения скорости реакции и ее энергии активации поможет разобраться в механизме реакции, т. е. в подробной картине ее протекания. Механизм реакции описывает ее путь или последовательность стадий, через которые она протекает, а также последовательность разрыва и образования новых связей и порядок изменений относительного положения атомов в ходе реакции. Установление детальных механизмов химических реакций представляет собой одну из величайщих задач химии. Если известен механизм реакции, то с его помощью можно предсказать новые реакции и проверить эти предсказания на дополнительных экспериментах. [c.20]

    Широкое изучение механизма химических реакций показало, что превращение одних и тех же органических соединений в соединения, относящиеся к различным классам, может происходить по аналогичным механизмам. Это обстоятельство оказало огромное влияние на дальнейшую разработку рациональных путей синтеза органических соединений, открытие и изучение новых реакций. Для того чтобы помочь студентам не только приобрести практические навыки по синтезу и идентификации органических соединений, но и дать возможность систематизировать и углубить свои знания в области механизма химических превращений, мы расп6ло> гили эксперимен-тальный материал по синтезу органических. оедид нАй в зависимости от механизма, лежащего в основе их получения, или в зависимости от типа превращения. Составленные по такому принципу разделы практикума снабжены краткими описаниями того или иного механизма. Исключение составляет раздел Синтезы с применением ароматических диазосоединений . [c.3]

    Н. Н. Семенов рассмотрел основные вехи из истории учения о химическом процессе и обратил внимание на то резкое различие, которое существовало между первым периодом развития формальной. оимичеокой кинетики, когда химики искусственно ограничивали поле своих исследований изучением реакций, подчиняющихся простым закономерностям , и последующими периодами, которые характеризовались включением в орбиту исследований все новых термодинамических, гидродинаМ1ических и кинетических факторов, таких, как влияние стенки реактора, примесей, теплоты от экзотермических реа кций, — словом всего того, что отличает реальные процессы от их приближенных идеальных моделей. Нобелевскую лекцию Н. Н. Семенов закончил выводами, подчеркивающими значение исследований в области учения о химическом процессе для развития химической технологии, в частности, для совершенствования способов химической переработки неф пи — окисления и крекинга углеводородов, дегидрогенизации, получения полимеров. Я убежден, — заявил он в заключение, — что необходимо развивать и ускорять работу по изучению механизма различных типов химических реакций. Вряд ли без этого можно существенно обогатить Х1имиче0кую технологию, а также добиться решающих успехов в биологии. Естественно, что на этом пути стоят огромные трудности. Химический процесс есть то основное явление, которое отличает химию от физики, делает первую более сложной наукой. Создание [c.147]

    Словом, абсолютно все реакции, представляющие собой важный резерв химической индустрии, независимо от того, были ли они когда-то признаны перспективными, но трудно реализуемыми, или вообще бесперспективными , прежде чем стать объектом химической технологии, должны были получить для этого соответствующую теоретическую (термодинамичеокую или кинетическую) обработку— своего рода пропуск в ранг химико-технологических процессов. Химическая термодинамика в первые десятилетия XX в. продолжала свою замечательную работу по выдаче такого рода пропускав, но она не могла справиться с задачей, так как в большинстве случаев для управления процессом требовалось знание не только термодинамических, по, главным образом, кинетических данных. Химическая же кинетика только гопда 1В1ключилась в решение этой задачи, когда были открыты пути изучения механизма химических реакций не по начальным и конечным со стояния.м вещества, а посредством информации о всех промежуточных продуктах, т. е. тогда, когда стало зарождаться то принципиально новое [c.148]

    Приведенные схемы реакции осуществляются в близких температурных интервалах, и все они являются термодинамически разрешенными, Специфичность действия катализаторов проявляется в избирательном осуществлении одного из термодинамических возможных направлений реакции. Воздействие катализатора на реакцию связано с промежуточным химическим взаимодействием его с реагирующими веществами, с вхождением катали.чатора в переходной комплекс химической реакции. Это определяет возможность осуществления реакции в присутствии катализатора по новому реакционному пути. Структура возникающего переходного комплекса каталитической реакции и его энергетическое состояние определяют скорость и наиравлеиие реакции под воздействием катализатора. [c.6]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    Зависимость константы скорости к каталитических реакций от температуры подчиняется уравнению Аррениуса [см. выражение (779а) ], причем энергия активации и каталитических реакций, как правило, меньше, чем некаталитических. Благодаря снижению и обеспечивается ускорение каталитических реакций по сравнению с некаталитическими. Снижение и объясняется тем, что реакция при катализе протекает по новому пути, складывающемуся из элементарных, химических реакций, энергия активации которых (и , 2 и т. д.) меньше, чем энергия активации некаталитической реакции и. [c.470]

    Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое "второе рождение" в результате широкого привлечения квантово-химических методов, зонной модели энергетического спектра электронов, открытия валентно-химических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу — создание новых неорганических веществ с заданными свогютвами. Из экспериментальных методов химии важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического ст(юения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Кроме того, по химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на исполь зо-вании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез дос- [c.6]


Смотреть страницы где упоминается термин Химические реакции новые пути: [c.53]    [c.568]    [c.568]    [c.106]    [c.197]    [c.77]    [c.5]    [c.275]   
Возможности химии сегодня и завтра (1992) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Путь реакции



© 2025 chem21.info Реклама на сайте