Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь теплопроводность

    Коэффициент теплопередачи при изготовлении аппарата из нержавеющей стали [теплопроводность стенки 17,5 Вт /(ж-°С), толщина стенки 5 мм] рассчитывали по формуле [2, 4]  [c.186]

    Поскольку кубовый остаток — органическая жидкость, в соответствии с табл. 11.2 примем термические сопротивления загрязнений равными Гзх = / 33= 1/5800 м -К/Вт. Повышенная коррозионная активность кубовой жидкости диктует выбор в качестве материала труб нержавеющей стали. Теплопроводность нержавеющей стали ст = 17,5 Вт/(м-К). Сумма термических сопротивлений стенки и загрязнений равна  [c.33]


    Оба рассмотренных способа дают результаты, очень отличающиеся друг от друга и от действительного значения коэффициента теплопередачи в случае наличия в ограждении элементов (включений), выполненных из материалов (например, из стали), теплопроводность которых значительно отличается от теплопроводности теплоизоляционного материала (коэффициент теплопроводности стали в 1000 раз больше коэффициента теплопроводности пенополистирола). [c.77]

    Физико-механические свойства композиционных полимерных материалов представлены в табл. 110. Плотность композиционных прессовочных полимерных материалов служит показателем их механических свойств и износостойкости и является критерием качества изделий. Снижение плотности на 0,05—0,1 г/см резко снижает механические свойства материалов. Прочность при сжатии падает с ростом температуры от 20 до 200° С у АФ-ЗТ, АМС-3 и АМС-1 соответственно в 2, 3 и 4 раза. Ударная вязкость у этих материалов низкая, что не позволяет применять их при ударных и вибрационных нагрузках, кроме АФ-ЗТС, наполненного стекловолокном. Коэффициент линейного расширения полимерных материалов на основе углерода практически постоянен во всем диапазоне рабочих температур, причем у АФ-ЗТ близок к его значению для бронз и нержавеющих сталей. Теплопроводность с ростом температуры изменяется незначительно (рис. 38). [c.166]

    Монокарбид урана более реакционноспособен с теплоносителями, чем двуокись урана он разлагается водой при температурах выше 80° С с выделением водорода и газообразных продуктов, окисляется в углекислом газе, образуя рыхлый порошок двуокиси урана и свободного углерода. Достоинством монокарбида урана является его совместимость с водородом в широком диапазоне температур при условии отсутствия металлического урана и иСг монокарбид урана не взаимодействует с жидким натрием при температурах 600—800° С. При невысоких температурах монокарбид урана не реагирует с материалом оболочки из бериллия, ниобия и нержавеющей стали. Теплопроводность и прочность монокарбида урана более высоки, чем у двуокиси урана. Поэтому монокарбид урана можно использовать с металлическими теплоносителями, водородом и азотом. [c.423]

    Паропроводы имеют толстую стенку труб, фасонных деталей и массивную арматуру. При быстром прогреве в стенках труб фасонных деталей и арматуре возникают недопустимые напряжения и в особенности это имеет место в паропроводах, изготовленных из аустенитных сталей, теплопроводность которых значительно ниже, чем у сталей углеродистых и низколегированных. [c.408]

    Количественная оценка процесса теплообмена — теплопроводность Я является физическим свойством вещества и представляет собой количество теплоты, проходящей в единицу времени через 1 м изотермической поверхности при температурном градиенте, равном единице. Теплопроводность для различных веществ различна и зависит от структуры, плотности, давления н температуры. Теплопроводность различных металлов находится в пределах 20—400 Вт/(м-К). Для большинства металлов с повышением температуры значение ее снижается. Присутствие в металле примесей также способствует снижению X. Так, для чистой меди X равна 395, а для меди со следами мышьяка 142 Вт/(м.К). Для железа с содержанием 0,1 /о углерода X равна 52, с 1% углерода 40 Вт/(м-К). Для закаленной углеродистой стали теплопроводность на 10—25% меньше, чем для мягкой стали. [c.12]


    Физические свойства аустенитных нержавеющих сталей определяются свойствами аустенита и его гранецентрированной кубической решеткой. Плотность аустенитных сталей находится в пределах от 7,85 до 8,0 г см . При большем содержании молибдена он может быть еще выше. Тепловое расширение большинства аустенитных сталей примерно наполовину больше, чем у углеродистых сталей. Теплопроводность аустенитных сталей в холодном состоянии относительно мала, но возрастает с повышением температуры и выше 900° С она такая же, как у углеродистой стали. Удельная теплоемкость при 100° С составляет 0,12 кал г-град). Электропроводность еще меньше, чем у хромистых сталей. [c.36]

    Легирующие элементы значительно нонижают теплопроводность-стали. Теплопроводность легированной стали может быть в несколько раз ниже теплопроводности простой углеродистой, поэтому легированную сталь следует нагревать для термической обработки более медленно и равномерно, чем углеродистую. В противном случае возможно коробление изделий или появление трещин. [c.23]

    Жидкость или газ поступают в торец корпуса вентиля и дросселируются, проходя кольцевой зазор между конусом и выходом из проходного канала, величину которого регу лируют, поворачивая шпиндель в резьбе кор пуса. После дросселирования газ или жид кость выходят через боковой штуцер. Кону шпинделя заканчивается трехгранной головкой, находяшейся в проходном канале и предназначенной для удаления из него загрязнений. Шпиндель вентиля и трубку делают из нержавеющей стали, теплопроводность которой сравнительно низкая. Сальник служит для предотвращения утечки газа по шпинделю. Сняв накидную гайку сальника, можно вывинтить и вынуть шпиндель, чтобы удалить загрязнения, образующиеся при отогреве. [c.193]

    Муфели газовых и нефтяных печей выполняют из огнеупорных плит толщиной 30—40 мм. Длительное время имели распространение шамотные муфели. Вследствие низкой теплопроводности шамота (при высоких температурах 0,8—1 ккал м град ч) температуру газов вокруг муфеля приходится поддерживать на 200— 300° выше, чем заданная температура обжига изделий. Поэтому для изготовления муфелей теперь применяют другие материалы карборунд, карбофракс, жароупорные стали. Теплопроводность этих материалов выше, чем у шамота, и, следовательно, требуется меньший перепад между температурой газа и температурой в муфеле. Это приводит к уменьшению расхода топлива. Толщина стенок муфеля из жароупорной стали всего 5—7 мм, перепад между температурой газов и температурой в муфеле составляет 50—60°. Муфели из жароупорной стали имеют тот недостаток, что в процессе эксплуатации деформируются и окисляются. В результате нарушается газоплотность муфеля и отслаивающаяся окалина попадает на изделия. [c.166]

    Муфель для обжига изделий выполняют из огнеупорных плит толщиной 30—40 мм. Длительное время имели распространение шамотные муфели. Вследствие небольшой теплопроводности (при высоких температурах теплопроводность шамота составляет 0,8—1,0 ккал1м-град час) температуру газов вокруг шамотного муфеля приходится поддерживать на 200—300° выше температуры обжига изделий. Поэтому в последние годы шамот стали заменять другими материалами—карборундом и карбо-фраксом, а также жароупорной сталью. Теплопроводность этих материалов выше, чем у шамота, следовательно, требуется меньший перепад между температурой газов и температурой внутри муфеля, что снижает расход топлива. Толщина стенок муфеля из жароупорной стали составляет 5—7 мм, перепад между температурой газов и температурой внутри муфеля получается всего 50—60°. Таким образом, наименьший расход топлива будет у печей с муфелем из жароупорной стали, но последние имеют тот недостаток, что в процессе эксплуатации деформируются и окисляются. В результате нарушается газоплотность муфеля, а отслаивающаяся окалина попадает на изделия [303]. [c.172]

    В настоящее время наиболее доступен стеклопластик (фибергласе), представляюшлй собой стеклоткань, пропитанную эпоксидной смолой. Дьюары из стеклопластика получили в сверхчувствительной магнитометрии широкое применение. Стеклопластик заметно легче алюминия, он не хрупок, по прочности сравним со сталью. Теплопроводность его в 40 раз ниже, чем у нержавеющей стали. Это позволяет изготавливать компактные, прочные дьюары. В силу малой теплопроводности стеклопластика дьюар хорошо держит гелий без охлаждения жидким азотом радиащюн-ного теплового экрана испаряющийся газообразный гелий достаточно охлаждает экран. Такие дьюары различного назначения объемом от 1 до 25 л производятся рядом фирм. Скорость испарения гелия около 1 л жидкости в сутки. Стеклопластик - удобный конструкционный материал с малой тепловой усадкой, хорошо сохраняющий форму. Это позволяет при значительном размере дьюара (до 1 м длины) обеспечить в его нижней, хвостовой части очень маленькое (до 7 мм) расстояние между гелиевым объемом, где находится чувствительный элемент магнитометра, и теплым днищем . Уменьшение этого расстояния - очень важная задача, так как измеряемое поле, как правило, быстро спадает с удалением от источника. [c.53]



Смотреть страницы где упоминается термин Сталь теплопроводность: [c.106]   
Справочник азотчика Том 1 (1967) -- [ c.455 ]

Справочник азотчика Т 1 (1967) -- [ c.455 ]




ПОИСК







© 2025 chem21.info Реклама на сайте