Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Статистический вывод волнового уравнения

    Прежде чем переходить к статистическому выводу волнового уравнения, полезно привести в явном виде решение уравнения (105). Рассматривая это решение, можно непосредственно убедить- [c.255]

    Статистический вывод волнового уравнения [c.256]

    При обычном обосновании уравнения Паули, впервые данном самим Паули [363], подразумевается, что приближение к равновесию вызывается возмущающим членом ЗС] в гамильтониане системы, причем ЗС, настолько мал, что вероятности перехода Рц можно вычислять в первом приближении нестационарной теории возмущений. При этом вывод уравнения Паули опирается на статистическую гипотезу, что фазы волновых функций, принадлежащих различным собственным значениям Ж, распределены беспорядочно, т.е. что матрица плотности считается диагональной в представлении невозмущенного гамильтониана. Эта гипотеза беспорядочных фаз относится не только к начальному состоянию, но многократно используется после каждого из таких интервалов времени, для которых невозмущенная энергия зе при переходе сохраняется. Аналогичная (и глубоко неудовлетворительная) ситуация имеет место при допущении молекулярного хаоса в выводе кинетического уравнения Больцмана. Этот вопрос связан с тем, что надо получить необратимость во времени, хотя исходные уравнения динамики обратимы [75,119, 163, 445]. [c.41]


    Объем книги и общий уровень изложения в ней не дают возможности систематически изложить основы квантовой химии, на автор стремился познакомить студента с основными методами ее необходимыми для понимания выводов и квантовомеханических представлений, используемых в книге. В дополнениях дана характеристика волнового уравнения Шредингера, основы квантовомеханической теории атома водорода и элементы квантовомеханической теории химической связи. Расширено рассмотрение молекулярных спектров. Значительное внимание уделено методам электронного парамагнитного резонанса, ядерного магнитного резонанса, нашедшим широкое применение при исследовании разных вопросов и уже на данной стадии развития подводящим к пониманию особенностей тонких и сверхтонких изменений в состоянии частиц. Введены основные сведения об элементах симметрии молекул и кристаллов. Описаны расчетные методы статистической термодинамики и основные понятия термодинамики необратимых процессов. Введено вириальное уравнение состояний и другие соотношения, используемые для расчета свойств неидеальных газов в широкой области температур и давлений. Приведен дополнительный материал, характеризующий особенности свойств веществ при высоких и очень высоких температурах. Описаны особенности внутреннего строения и свойств полимерных материалов. [c.12]

    Теоретический расчет вириальных коэффициентов осуществляется на основе методов статистической физики с использование-м иногда выводов волновой механики. Однако расчет сложен во всех случаях, за исключением расчета для газов, обладающих сравнительно простыми молекулами. Поэтому часто применяют уравнение (HI, 35), определяя коэффициент В эмпирическим путем на основе имеющихся экспериментальных данных для рассматриваемого газа. [c.152]

    Те элементы кинетической и молекулярной теории газов, термодинамики, физической химии, квантовой теории, волновой и статистической механики, которые имеют отношение к главной теме книги, также вкратце излагаются. Так, гл. 2 посвящена уравнениям пограничного слоя и их выводу на основе молекулярной теории газов. Глава 9 посвящена вопросам термодинамики газовых смесей и методам квантовой теории, спектроскопическому анализу и статистической механике в том их аспекте, в котором они применяются к определению термодинамических свойств и равновесных составов газовых смесей. Глава 10 посвящена переносным свойствам и роли межмолекулярных сил в их определении. [c.8]


    При обычном обосновании уравнения Паули, впервые данном самим Паули [141], подразумевается, что приближение к равновесию вызывается возмущающим членом <9 1 в гамильтониане системы Жг, причем Ж настолько мал, что вероятности перехода Рц можно вычислять в первом приближении с помощью нестационарной теории возмущений. При этом вывод уравнения Паули опирается на статистическую гипотезу, что фазы волновых функций, принадлежащих различным собственным значениям Ж, распределены беспорядочно, т. е. что матрица плотности считается диагональной в представлении невозмущенного гамильтониана. Эта гипотеза беспорядочных фаз относится не только к начальному состоянию, но многократно используется после каждого из таких интервалов вре- [c.142]

    Выводы. В этой главе представлены уравнения, применимые для расчета термодинамических свойств равновесных газовых смесей, и коротко ообъясняется, как эта уравнения выводятся из квантовой теории, волновой механики, статистической механики и некоторых физических измерений. Изложение не является исчерпывающим, и читатель, интересующийся более полным изложением ), отсылается к цитируемой литературе. Намерение автора заключалось в представлении в этой главе некоторых полезных уравнений, а также в объяснении законов, лежащих в основе их вывода. [c.362]


Смотреть страницы где упоминается термин Статистический вывод волнового уравнения: [c.380]    [c.61]   
Смотреть главы в:

Современная квантовая химия Том 1 -> Статистический вывод волнового уравнения

Современная квантовая химия Том1 -> Статистический вывод волнового уравнения




ПОИСК





Смотрите так же термины и статьи:

Уравнения волновое



© 2024 chem21.info Реклама на сайте