Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические свойства полимерных смесей

    Прежде всего для полимерных соединений характерен очень большой. молекулярный вес, колеблющийся в большинстве случаев от 8—10 тысяч до нескольких миллионов. По этой причине молекулы полимеров обычно носят название макромолекул, т. е. больших молекул. Физико-механические свойства полимеров во многом зависят от их молекулярного веса. В связи с тем, что полимеры представляют собой обычно смесь макромолекул различной величины, молекулярный вес полимера является средней величиной молекулярных весов отдельных макромолекул. [c.365]


    Введение латексов (водных эмульсий полимера) в цементную смесь позволяет достичь как хорошего смешения полимерных частиц с цементным гелем, так и приемлемой степени гидратации [729, 969—971]. Таким путем удается избежать побочных реакций между мономером и компонентами цемента. Исследованы различные полимеры латексы сополимеров винилиденхлорида [237], бу-тадиен-стирольные сополимеры [237], акрилаты [969—971], эпоксидные смолы [900], а также дисперсии меламиновых смол [4]. Типичные механические свойства латексов приведены в табл. 11.2 [969—971]. [c.290]

    В настоящее время полимерные материалы, используемые для изготовления полимерных пленок, в редких случаях представляют собой индивидуальные полимеры. Обычно в состав материала входят стабилизаторы, пластификаторы, пигменты и красители, наполнители и другие ингредиенты. В этом случае важное значение для оценки возможности введения в состав полимерной композиции того или иного ингредиента имеет так называемая совместимость этого компонента с полимером. Под совместимостью в эксплуатационном (технологическом) отношении понимается способность двух компонентов образовывать смесь с удовлетворительными механическими свойствами [46], сохраняющую свою структуру и свойства в течение времени, определяемого технологической или эксплуатационной необходимостью [93]. [c.68]

    Для повышения физико-механических свойств покрытий применяются наполнители. Наполнитель должен обладать высокой степенью дисперсности, термостойкостью и инертностью по отношению к полимеру. Введение наполнителей в порошковую смесь повышает ее вязкость и приводит к изменению технологических параметров процесса формирования покрытия вследствие изменения реологических свойств расплава полимера. Большое содержание наполнителей может привести к ухудшению параметров псевдоожижения полимерных композиций. Введением некоторых наполнителей можно изменять структуру покрытий на основе кристаллических полимеров. [c.111]

    Анализ диаграммы и кривых охлаждения свидетельствует, что при содержании масла более 5 - 10% в полимерном материале появляется обогащенная жидкостью фаза (на схемах структуры эта фаза зачернена), которая вначале располагается по границам структурных образований, формируя своеобразную систему капилляров. При этом прочность материала изменяется незначительно при сохранении высокой деформативности материала, что является характерным для твердых растворов [46], составляющих основу материала при данном содержании пластификатора. В области диаграммы, соответствующей содержанию масла 30 - 50%, имеет место перитектическое превращение, в результате которого при охлаждении ниже температуры этого превращения (точка Гп) образуется смесь кристаллов V- и Р-твердых растворов. Выделение в качестве первичной фазы, обогащенной пластификатором (Р), отражается на структуре и свойствах материала. Формируются ячейки, близкие по форме к сферическим, заполненные веществом с высоким содержанием пластификатора. Прочность материала снижается, поскольку сокращается объем фазы с высоким содержанием полимера (7-фаза), обладающей повышенной прочностью. По этой же причине снижается деформативность материала. Зато в расславленном состоянии жидкотекучесть материала значительно возрастает, подобно тому как это происходит и для сплавов низкомолекулярных веществ, образующих при охлаждении механическую смесь кристаллов различных фаз [ЗЗ]. [c.104]


    Таким образом, задача заключалась в исследовании влияния рецептурных факторов на свойства эластичных магнитопроводов, получаемых на основе магнитномягких резин. Независимость действительной части магнитной проницаемости от типа каучука позволяет выбирать каучук по его способности сохранять прочностные и эластические свойства пои высокой степени наполнения грубодисперсным ферритовым наполнителем. Для эластичных магнитопроводов в качестве полимерной основы выбрана смесь изопренового СКИ-3 и нитрильного СКН-18 каучуков, имеющая хорошие технологические свойства и обеспечивающая повышение прочностных показателей высоконаполненных вулканизатов. В качестве магнитного наполнителя использовался ферритовый порошок Ф1 (табл. 2.2). Ниже приведены данные по оценке влияния степени наполнения на магнитную проницаемость и механические свойства магнитномягких резин на основе смеси каучуков СКИ-3 и СКН-18  [c.176]

    Из поливинилхлоридной смолы изготовляют мягкие материалы, эластичные как при комнатной, так и при пониженных температурах. Для получения их в поливинилхлоридную смолу вводят значительное количество пластификатора, главным образом низкомолекулярную жидкость, и реже полимерное вещество с большим молекулярным весом. Обычно пластификатор вводят в полимер, растворяя его в полимере с образованием твердого раствора. Процесс введения пластификатора в поливинилхлоридную смолу иазывают пластифицированием. Часто процесс растворения пластификатора в поливинилхлориде иазывают совмещением пластификатора оо смолой или же желатинизацией. Практически важны только такие пластификаторы, которые обладают низкой температурой замерзания и достаточно высокой температурой кипения для того, чтобы при технологической обработке материала они незначительно испарялись и большая часть их оставалась бы в готово.м изделии. Обычно Смесь двух пластификаторов оказывает более пластифицирующее действ1ие, чем каждый, из пластификаторов в отдельности. Влияние количества пластификатора яа изменение физико-механических свойств пластиката видно из табл. 20. [c.290]

    С полимерными пластификаторами были получены светлые прозрачные поливинилхлоридные пленки с хорошими механическими свойствами. Удивительно, что пленки, содержаш ие только полимерные пластификаторы, не уступали по качеству пленкам, содержаш им смесь полимерных пластификаторов с обычным диоктилфталатом. Не отмечается заметного различия и между олигомерами, полученными анионной или радикально-цепной полимеризацией в растворе. Даже политетрагидрофурфурилакрилат с молекулярным весом свыше 2000 хорошо совмещается с поливинилхлоридом, что объясняется влиянием гетероциклического пятичленного кольца в молекуле пластификатора. [c.836]

    Смешение различных веществ позволяет получить материалы с новыми свойствами. Это следует из повседневного нашего опыта вязкую жидкость можно разбавить менее вязкой, так что полученная смесь окажется более текучей по сравнению с более вязкой жидкостью к малопрочному легко деформирующемуся металлу добавляют хрупкий и очень твердый компонент, получая в результате прочный, упругий сплав. Иногда достаточно к металлу добавить ничтожное количество другого компонента (так называемой легирующей добавки), чтобы получить фактически совершенно новый материал, непохожий на исходные компоненты смеси. Объем применения чистых металлов невелик по сравнению со сплавами, а в качестве конструкционных материалов, там, где главную роль играют механические свойства, чистые металлы вообще не применяются. Аналогичная картина наблюдается и в области полимеров, где относительное количество чистых полимеров, применяемых в качестве конструкционных материалов, непрерывно уменьшается. Среди сложных по составу комбинированных полимерных материалов все большую роль приобретают смеси полимеров, специфика механических свойств и особенности структуры которых и рассматриваются в этой главе. [c.290]

    Для получения битумов с хорошими дорожно-строительными свойствами при сложившихся у нас условиях, когда на нефтеперерабатывающие заводы поступает смесь нефтей с химическим составом, изменяющимся в довольно широких пределах, наиболее правильным является подбор и применение рациональных технологических процессов, а также введение в битумы различных добавок (полимерных материалов, поверхностно-активных веществ), которые изменяют упруго-вязкие, термо-механические и адгезионные свойства. [c.94]

    В настоящей работе проведено реологические исследования наполненных эпоксидно-каучуковых смесей, где щгтем изменения химической природы эпоксидных олигомеров и жидких каучуков менялось их сродство, которое оценивалось по разности величин параметров растворимости. Характер образующейся структуры оценивался по кривым течения композиций, а также по величине энергии активации вязкого течения. Вми исследованы реологические свойства смесей неотвержценннх олигомеров, а также системы, наполненные порошком алюминия со сферической формой частиц. Обнаружено, что величина относительной вязкости (отношение вязкостей наполненного и чистого олигомеров) для систем с бутадиеннитрильными каучуками падает с увеличением содержания в них акрилонитрила. Показано, что в плохо совместимых наполненных олигомерах образуется коагуляционная структура из-за отсутствия на поверхности твердой фазы достаточно эффективного адсорбционного слоя, способного препятствовать контактам между частицами. Выявлено влияние активного наполнителя на механические свойства наполненных материмов, предложен способ бценки их прочностных характеристик. Показано,-что введение алюминия в смесь эпоксидной смолы с бутадиеннитрильными каучуками с близкими значениями параметров растворимости приводит к упрочнению полимерной матрицы. [c.146]


    Обычно полимерный образец представляет собой смесь гомологов различных молекулярных весов. Средний молекулярный вес и молекулярно-весовое распределение изменяются от образца к образцу. Подобная неоднородность лишь в отдельных редких случаях оказывает влияние на химические свойства образцов, но в значительной степени определяет физические, механические и реологические характеристики полимеров. Данная глава посвящена основным экспериментальным методикам определения молекулярного веса и молекулярно-весового распределения кристаллических полиолефинов и подробному обсуждению некоторых результатов. [c.111]

    Формование ВПС в аппаратах происходит непрерывно, вследствие этого осадитель представляет собой суспензию, где дисперсионной средой является смесь осадителя с растворителем, а дисперсная фаза представлена образовавшимися частицами связующих. В аппаратах разных типов ВПС получают при различии следующих факторов физических свойств дисперсионной среды, которые определяются модулем формования — отношением объемов осадителя и раствора полимера концентрации частиц в суспензии и температуры. Этими факторами обусловлена эффективная вязкость суспензии, которая определяется развивающимися напряжениями и скоростями сдвига, влияющими в свою очередь на кинетику превращения жидких форм полимерной системы и геометрические характеристики ВПС. В связи с этим важно изучение реологических свойств суспензий связующих. В работе [227] рассмотрено течение суспензий ВПС в смеси глицерина и воды с различным содержанием твердой фазы. Кривые течения приведены на рис. 3.19. Полученные зависимости свидетельствуют о наличии физической сетки, образованной механически переплетенными части- [c.141]

    С добавлением в ванны из осадителей растворителя и с повышением его концентрации происходят изменения состава и строения волокон, связанные в первую очередь с изменением состава и вязкости образующейся полимерной фазы. Образующаяся при фазовом разделении раствора полимерная фаза является в равновесном состоянии полимером, набухшим в смеси осадителя с растворителем. Поэтому о составе и механических свойствах полимерной фазы можно судить по данным о набухании полимера и усадке вытянутых волокон в смесях растворителя с осадителем. Соответствующие данные для системы ПВХ — смесь воды с диметилформамидом приведены на рис. 27.2 и рис. 27.3. Как видно из рис. 27.2, значительное набухание ПВХ происходит в смесях с содержанием диметилформамида более 70%. Этой же области концентраций смеси соответствует переход набухпюго полимера [c.398]

    Поскольку один наполнитель, как правило, не может удовлетворять всем предъявляемым требованиям, в ряде случаев применяют смесь наполнителей. Весьма эффективно использование смеси, состоящей из двух наполнителей, имеющих различную форму, например волокон и стеклянных микросфер. При правильном выборе размера частиц наполнителей более мелкие частицы располагаются внутри обогащенных связующим областей, образованных более крупными частицами, и вытесняют полимерное связующее. Это улучщает смачивание частиц связующим и повыщает текучесть композиции и механические свойства отвержденного материала 1[137]. [c.102]

    Пластификаторы. Один из методов получения изоляционного материала с заданными свойствами - это пластификация, т.е. введение в битум веществ, химически не взаимодействующих с ним, но образующих Гомогенную систему. Пластификаторы предназначены для повышения пластичности изоляционных материалов при нанесении их в условиях температур до -25 С. Пластификаторы считаются эффективными, если при введении их в битум наряду с приданием мастике упругопластичных свойств наблюдается минимальное снижение вязкости и температуры размягчения. Лучшими пластификаторами являются полимерные продукты - полнизобутилен с различной относительной молекулярной массой и полидиен. Менее эффективны а) масло осевое - неочищенные смазочные масла прямой перегонки нефти с кинематической вязкостью при температуре 50 °С 0,12-0,52 см /с содержанием механических примесей не более 0,07 % и воды не более 0,4 %, температурой вспышки не ниже 135 °С и температурой застывания не выше -55 °С б) масло зеленое - продукт пиролиза нефтепродуктов плотностью около 970 кг/м , с содержанием серы не более 1 % и воды не более 0,2 % в) лакойль - смесь полимеризованных углеводородов пиролиза нефти и кислого гудрона, получаемого при очистке легкого масла серной кислотой с вязкостью при 50 С от 0,035 до 0,16 см /с, температурой вспышки не ниже 35 С, содержанием воды не более 2 % г) масла автотракторные (автолы), трансформаторные. [c.81]

    Пористые полимерные сорбенты различных типов пoлyчaюt методом суспензионной полимеризации, когда смесь мономеров и сшивающих агентов полимеризуется в среде инертного разбавителя в присутствии катализатора. Образующаяся в частицах на первых стадиях микроструктура геля постепенно преобразуется в матричную структуру, в которой внутренние полости заполнены инертным разбавителем. После высушивания и вакуумирования созданная пористая структура сохраняется и образуются достаточно однородные по размерам частицы сорбента с достаточно хорошей механической прочностью, которыми можно заполнять хроматографические колонки сухим методом. Выбрав подходящую систему мономеров, сшивающего и инертного разбавителя, можно получить полимерные сорбенты с различными функциональными группами и различной пористой структурой. В табл. II.3 приведены свойства наиболее распространенных зарубежных и советских полимерных сорбентов. Как видно из приведенных данных, свойства пор1истой структуры изменяются в очень широких пределах. В соответствии с общим правилом, чем больше размер пор, тем быстрее массообнен в порах и выше скорость анализа. Пористые полимерные сорбенты с размерами пор менее 10 нм наиболее подходящи для анализа газов, тогда как сорбенты с размерами пор более 10 нм позволяют разделять относительно высококи-пящие вещества. [c.93]

    В образовании связей наполнитель — полимер участвуют свободные полимерные радикалы, поэтому на про-десс существенно влияют входящие в резиновую смесь такие активные компоненты, как проти остарители, ускорители вулканизации и др., а следовательно, и порядок введения в смесь этих ингредиентов. Таким образом, энергетическая и химическая неоднородность поверхности наполнителя, а также частиц полимера, появляющаяся, в частности, благодаря действию механического поля при смешении, приводит к возникновению набора связей наполнитель — полимер разной прочности. В этих условиях, с одной стороны, жестко связывается часть полимера, формируется приграничный межфазный его слой со свойствами, отличными от [c.60]

    Масла ТСЗ-9-ГИП и ТСЗп-9, имеющие лучшие низкотемпературные свойства, готовят смешением маловязких масел МС-8 или трансформаторного с высоковязким маслом МС-20с, загущая эту смесь до вязкости при 100 °С не менее 9 мм / (9 сСт) полимерной присадкой, стойкой к механической деструкции. В качестве загущающих присадок используют в основном полиизобутилен и полиметакрилат. Кроме того, в масла вводят противсизнос-ные, противокоррозионные, противопенные и депрессор-ные присадки. [c.90]


Смотреть страницы где упоминается термин Механические свойства полимерных смесей: [c.49]    [c.128]    [c.152]    [c.209]   
Высокомолекулярные соединения (1981) -- [ c.5 , c.8 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.5 , c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Механические полимерные смеси

ПОЛИМЕРНЫЕ СМЕСИ

СВОЙСТВА ПОЛИМЕРНЫХ СМЕСЕЙ



© 2025 chem21.info Реклама на сайте