Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности хроматографии в тонких слоях

    В тонкослойной хроматографии порошкообразный твердый сорбент наносят тонким слоем на пластинку, а жидкая подвижная фаза движется вдоль этого слоя. В тонком слое движение подвижной фазы и растворенных в ней компонентов анализируемой смеси происходит лишь в плоскости, в двухмерном пространстве. Вследствие этого метод обладает особенностями, отличающими его от колоночной хроматографии. К этим отличиям прежде всего относятся малая продолжительность анализа, большая эффективность разделения, возможность анализировать весьма малые количества вещества и простота проведения эксперимента. Метод может применяться во всех вариантах хроматографии, кроме тех случаев, когда подвижной фазой служит газ. Удаления компонентов анализируемой смеси со слоя сорбента метод тонкослойной хроматографии не требует. [c.17]


    Малая высота тарелки и, следовательно, высокая эффективность связаны с малыми путями диффузии к сорбенту. Особо высокая эффективность осуществляется в так называемой капиллярной хроматографии. В качестве колонки используется капилляр, на стенке которого тонким слоем нанесена неподвижная фаза. Число тарелок в таких колонках доведено до миллиона. В результате удается анализировать смеси, содержащие сотни компонентов, что особенно важно для анализа природных смесей (наиример, бензинов) и для решения медико-биологических проблем. [c.406]

    Большое распространение получил электрофорез в тонких слоях для разделения высокомолекулярных веществ на различных носителях, особенно на агаровом, крахмальном и полиакриламидном гелях. Благодаря замечательной разделительной способности этот метод нашел применение прежде всего в клинической биохимии. Напомним, что в подавляющем большинстве случаев разделение с помощью этого метода осуществляется на носителях, приготовленных в форме геля. Опыт, накопленный в области хроматографии в тонких слоях, показал, однако, что для разделения некоторых групп веществ, в первую очередь низкомолекулярных, можно с успехом применять и суспензии некоторых сорбентов. [c.160]

    Тонкослойная хроматография, по-видимому, представляет собой наиболее быстрый, легкий и наиболее часто применяемый метод оценки чистоты органических веществ (а также наличия смеси нескольких компонентов и, часто, природы вещества). Метод хроматографии можно определить как способ разделения химических веществ, основанный на различиях в характере их распределения между двумя фазами, одна из которых неподвижна (например, поверхность твердого тела), а вторая является транспортирующей подвижной средой (например, растворитель или элюент). Общие вопросы хроматографии. детально разбираются в гл. 7. В тонкослойной хроматографии неподвижная фаза представляет собой тонкий слой адсорбента, распределенный на поверхности стеклянной или пластмассовой пластинки. Для связывания частиц сорбента между собой и с подложкой служат сульфат кальция или органические полимеры. Небольшое количество пробы помещают у края пластинки, и этот край опускают в растворитель, налитый тонким слоем в специальный сосуд (см. рис. 3.2). Расстояние, на которое растворитель, пропитывающий слой сорбента, продвинет исследуемое вещество, зависит от его адсорбционной способности в данной системе, а также от многих других факторов. Достаточно часто удается без особого труда подобрать такую систему адсорбент —растворитель, которая позволила бы разделить большинство компонентов данной смеси. Такой метод разделения особенно полезен для работы с термолабильными или нелетучими соединениями, т. е. с такими веществами, для которых нельзя определить температуру кипения и которые не могут быть исследованы методом газовой хроматографии. [c.50]


    В разделе III мы подробно рассмотрим особенности хроматографии в тонких слоях. [c.82]

    III. ОСОБЕННОСТИ ХРОМАТОГРАФИИ В ТОНКИХ СЛОЯХ [c.107]

    Известно, что по поведению вещества при хроматографии на бумаге можно составить примерную картину его поведения на целлюлозных колонках . Первым, легко выполнимым условием является выбор сравнимых отношений количества вещества и количества бумаги или целлюлозного порошка. Вторым, труднее реализуемым условием надежного сравнения является одинаковая скорость движения и одинаковое распределение подвижной фазы вдоль разделительного слоя . Это условие наверняка не выполняется, если, как обычно, применять колонку, предварительно пропитанную растворителем [79]. В принципе то же самое относится к попыткам в целях увеличения пропускной способности по веществу перейти от тонких слоев к колонкам с силикагелем. В последнее время разработан, однако, вариант колоночной хроматографии [81], позволяющий считать более или менее выполненным также и второе из упомянутых условий. Этот вариант характеризуется тем, что растворитель, как и в случае горизонтальных тонких слоев [64], проникает в силикагель исключительно под действием капиллярных сил после полного смачивания, как и в случае проточной методики [64] с закрытыми пластинками. Затем он перемещается дальше вследствие испарения в конце колонки. Как показывает практика, во многих случаях, согласно Дану и Фуксу [81], величины Rf для закрытых пластинок сравнимы с величинами для колонки. Поэтому зависимости на колонке должны быть особенно близки к зависимостям на закрытых пластинках, поскольку и в том и в другом случае понятие насыщение камеры не имеет смысла. [c.127]

    В последнее время начали применять капиллярную хроматографию (см. ниже), в которой анализируемую смесь и газ-носитель пропускают через длинный узкий капилляр (из стекла, нейлона или иного материала), покрытый внутри тонким слоем растворителя. Подобные капиллярные колонки обладают особенно высокой разделительной способностью. [c.258]

    Один из наиболее важных этапов развития метода Цвета, раскрывший его огромные потенциальные возможности, связан с созданием тонкослойной хроматографии (ТСХ), которую предложили в 1938 г. Измайлов и Шрайбер [1]. Характерно, что первыми объектами, исследованными ТСХ. явились, как и в оригинальных работах Цвета, продукты растительного происхождения, в данном случае алкалоиды. В своей основополагающей работе [1] Измайлов и Шрайбер описали круговую ТСХ на окиси алюминия, нанесенной в виде тонкого слоя на микроскопные стекла. Авторы показали полное соответствие наблюдаемой хроматографической картины с результатами колоночной хроматографии и назвали изобретенный илги метод капельной хроматографией . В работе [1] были отмечены и отличительные особенности ТСХ универсальность, высокая чувствительность, методическая простота и скорость анализа. Однако метод ТСХ получил широкое распространение среди исследователей после опубликования в 1956 г. работы Шталя [2], в которой описаны методы стандартизации адсорбентов, приготовления хроматографических пластинок, наблюдения и документации хроматограмм. Уже в 1959 г. появилось 15 публикаций по ТСХ, в 1960 г.— 70 публикаций, в 1961 г.— их число увеличилось до нескольких сотен. В 1962 г. появилось первое руководство по ТСХ под редакцией Шталя [3]. В настоящее время по числу публикуемых работ ТСХ занимает одно из первых мест среди хроматографических методов. [c.134]

    Рассмотренный круг работ по количественному анализу показывает, что нет принципиальных ограничений применения хроматографии на полиамиде в этой области, а разделение в тонких слоях делает метод очень эффективным в экспресс-анализе и особенно при работе с микроколичествами веш еств. [c.127]

    Газожидкостная хроматография основана на разделении компонентов газовой смеси при прохождении ее через колонку с твердым носителем, покрытым тонким слоем жидкости. Разделенные компоненты по выходе из колонны анализируются специальными детекторами. Используют для анализа смесей различных веществ, особенно продуктов нефтепереработки [c.218]

    В принципе, механизм хроматографического разделения элементов на пластинке с тонким слоем сорбента не отличается от механизма хроматографии в колоночном варианте и в зависимости от выбора условий опыта может быть адсорбционным, распределительным, ионообменным новое здесь — в технике эксперимента. Именно эта особенность в технике проведения хроматографического процесса и послужила основой для использования термина тонкослойная хроматография в отличие от колоночной . [c.6]

    Анализ микроколичеств вещества — характерная особенность газовой хроматографии. На обычных аналитических колонках с насадкой величина пробы для анализа составляет I—2 мг. Однако совершенно новые возможности открылись с изобретением так называемой капиллярной газо-жидкостной хроматографии, предложенной в 1958 г. М. Голеем [4]. В этом случае разделение осуществляется в стеклянных или металлических капиллярах, внутренние стенки которых покрыты тонким слоем неподвижной фазы. В этом случае можно проанализировать пробу в 10 —10 г. В капиллярном хроматографе приходится использовать высокочувствительные детекторы малого объема и вводить пробу специальными микродозаторами или направлять на анализ только часть вводимой в поток пробы. Так, например, в капиллярном хроматографе ХГ-1301 (рис. 2), жидкую пробу при помощи микрошприца вводят в смеситель, представляющий собой металлический цилиндр емкостью 30 мл. Внутри смесителя находится испаритель. Вводимая жидкая проба испаряется и смешивается с газом-носителем, после чего паро-газовая смесь поступает в дозатор поршневого типа, работающий по [c.278]


    Физико-математические способы рассмотрения процессов, различные общие теории хроматографии, которые хотя и имеют различную форму, родственны друг другу и в своей основе применимы к любому хроматографическому методу, в том числе и к хроматографии в тонких слоях. В последнем случае имеются особенности протекания процесса, которые следует учитывать при теоретическом рассмотрении метода. [c.10]

    Техника нанесения пробы анализируемого вещества. Решающую роль в получении четких хроматограмм и особенно в количественных расчетах играют и количество наносимой пробы, и правильное ее нанесение на тонкий слой сорбента. Применяются два способа нанесение пробы в виде точки и в виде полосы. Последним способом пользуются главным образом в препаративной хроматографии. [c.138]

    По технике выполнения эксперимента метод хроматографии в тонких слоях сорбентов аналогичен методу хроматографии на бумаге. Однако метод хроматографии в тонких слоях имеет некоторые особенности и ряд преимуществ перед методом хроматографии на бумаге. [c.36]

    При плоскостной хроматографии неподвижная фаза (целлюлоза, силикагель, оксид алюминия) в виде тонкого мелкодисперсного слоя наносится на стеклянную или металлическую пластинку. На этот слой в виде небольшого пятна или полоски наносится разделяемая смесь и затем самотоком, за счет впитывания в поры тонкого слоя, пропускается элюирующий растворитель. Этот метод известный как тонкослойная хроматография (ТСХ), очень прост в аппаратурном оформлении, поскольку требует лишь наличия закрытой камеры, предотвращающей испарение подвижной фазы, и сосуда с элюентом, в который погружают пластинки. Второй вариант плоскостного метода, особенно широко применявшегося на заре развития хроматографии,— хроматография на бумаге, при которой роль тонкого слоя выполняет специально приготовленная хроматографическая бумага, способная медленно впитывать элюент. [c.340]

    Следует отметить, что для анализа пестицидов (особенно при изучении их метаболизма) большой интерес представляет использование тонкослойной хроматографии, методика работы по которой достаточно подробно описана в недавно вышедших книгах Ахрем А. А., Кузнецова А. И., Тонкослойная хроматография, изд. Наука , 1964 г. Хроматография в тонких слоях, под редакцией Шталя Э., изд. Мир , 1965 г., а также автоматических методов анализа [c.9]

    Хроматографические методы анализа особенно быстро стали развиваться в последние 25 лет. Хроматографию целесообразно классифицировать по различным признакам агрегатному состоянию разделяемой смеси и сорбента, механизму сорбции (действующие силы), оформлению процесса разделения (колонки, капилляры, листы бумаги, тонкие слои), направлению движения (восходящее, нисходящее, радиальное), объекту движения (разделяемая смесь или сорбент). [c.8]

    В классический период развития органической химии, длившийся почти столетие, экспериментатор обходился, как правило, небольшим числом сравнительно простых типовых методов. Для овладения экспериментальной техникой тех лет достаточно было научиться осуществлять синтез нескольких десятков соединений, так как основные операции выделения и очистки веществ часто повторялись и мало отличались друг от друга. За последние десятилетия арсенал методов и приемов, применяемых в органической лаборатории, неимоверно вырос. Особенно много принципиально нового введено в методы выделения веществ, эффективность которых неизмеримо возросла благодаря внедрению различных видов хроматографии, противоточного распределения, электрофореза и т. д. Появился целый набор специальных приемов для работы в микро- и полу-ми кромасштабах. Такие методы, как хроматография в тонких слоях и на бумаге, в сочетании с физическими методами идентификации и контроля позволили органикам непрерывно следить за ходом химических реакций или процессов разделения веществ. [c.5]

    Все рассмотренные выше работы были выполнены с обычными набивными аналитическими колонками. Целесообразно также применение химических реакций. Б капиллярной хроматографии, особенно в тех случаях, когда исследуются сложные смеси (и, следовательно, возможно наложение зон образовавшихся продуктов) или образовавшийся спектр продуктов является сложным, X. Г. Штруп-пе [24] использовал реакционную газовую хроматографию совместно с капиллярной хроматографией. В качестве реактора служила алюминиевая капиллярная трубка (600x0,03 см), внутренние стенки которой были покрыты тонким слоем платины. Для нанесения катализатора на внутренние стенки капиллярного реактора использова лась обычная методика нанесения неподвижной жидкой фазы на капиллярную колонку капилляр заполняли эфирным раствором платинохлористоводородной кислоты, перемещая его в течение 15 мин. из одного конца трубки в другой. Затем реактор нагревали при 150° С в токе водорода, при этом платинохлористоводородную кислоту восстанавливали до платины. Процесс гидрирования проводили в потоке водорода при 125° С. Метод был проверен на анализе искусственных смесей углеводородов с т. кип. до 85°С. Показано, что MOHO-,ди- и циклоолефины быстро присоединяют водород по двойным связям, причем углеродная структура ароматических, нафтеновых и [c.62]

    Установлено, что между концентрацией изучаемого вещества в растворе и измеренной интенсивностью флуоресценции существует прямая зависимость, что позволяет использовать данный метод в целях количественного определения производных кумарина, особенно учи-тьгаая возможность сочетатя данного метода с хроматографией на бумаге или в тех. Тем не менее, метод флуорометрии, несмотря на его высокую чувствительность, пока не нашел применения в количественном анализе кумаринов. Однако, флуоресцентные свойства производных бензо-а-пирона нашли широкое применение в качественном анализе, главным образом, при хроматографии на бумаге и в тонких слоях сорбентов. Следует отметить, что по характеру флу-оресце шии можно отличить фурокумарины от других представителей этого класса соединений. [c.76]

    Матрицей называют твердую основу неподвижной хроматографической фазы. Она имеет вид сплошных или пористых гранул последние часто представляют собой прострапствеииую сетку линейных полимеров. Для придания материалу матрицы необходимых для хроматографии свойств его модифицируют. Модификация люжет представлять собой химическое присоединение ( присадку ) поио-геиных групп, гидрофобных молекул, биологически активных веществ или фиксацию путем адсорбции тонкого слоя растворителя. Хотя особенности хроматографического процесса определяются в основном характером модификации, физико-химические параметры матрицы могут существенно влиять на свойства неподвилчной фазы. К таким параметрам относятся следующие размеры и форма гранул и их нор диапазон разброса этих размеров механическая прочность материала матрицы характер его смачивания и набухания в элюенте химическая стойкость и инертность в условиях хроматографической элюции реакционная способность, обеспечивающая возможность химической модификации матрицы. [c.48]

    Весьма разнообразны методы хроматографии, играющие большую роль в аналитической химии, особенно в анализе органических веществ. Разделение смесей осуществляется при движении жидкой или газообразной фазы сквозь слой неподвижного сорбента, состоящего из дискретных элементов — обычно зерен или волокон. Сорбент обладает большой суммарной поверхностью. Разница в адсорбируемости компонентов разделяемой смеси или в кинетике их сорбции и десорбции обеспечивает разделение. Дело в том, что при движении смеси через слой сорбента элементарные акты сорбции и десорбции повторяются множество раз это позволяет эффективно использовать даже очень малую разницу в сорбируе-мости компонентов или разницу в кинетике сорбции — десорбции. Механизм сорбции может быть различным — простая адсорбция, ионный обмен, образование осадков, растворимых комплексных соединений, распределяемых между двумя жидкими фазами. Соответственно известны и применяются адсорбционная, ионообменная, осадочная, распределительная хроматография. Различна и техника хроматографического разделения сорбентом можно заполнить колонку, его можно использовать в виде тонкого слоя — мы будем иметь дело с колоночной, бумажной или тонкослойной хроматографией. Иногда хроматографическое разделение осуществляют ири наложении электрического поля и тогда появляется [c.80]

    В последнее время для анализа органических кислот различных классов начинает с успехом применяться метод хроматографии в тонких слоях. Он отличается от других методов разделения органических кислот быстротой выполнения анализа и высокой чувствительностью, особенно если использовать ультрамикрохроматографию. [c.48]

    В результате этих усилий на Выставке химической аппаратуры (АСНЕМА) 1958 г. было представлено основное оборудование для хроматографии в тонких слоях 156]. Интерес со стороны промышленных лабораторий был велик. Особенное впечатление производила быстрота анализа и прекрасное разделение на тонких слайх силикагеля Г. Лишь с этого времени хроматография в тонких слоях получила всеобщее признание и распространение. В 1961— 1962 гг. появились первые более полные обзоры, в которых были рассмотрены прежние результаты анализа [2, 12, 21, 42, 45, 54, 59, 61, 67, 69, 73]. [c.14]

    Поскольку хроматография в тонких слоях, так же как и хроматография на бумаге, используется в качестве метода идентификации отдельшлх соединений, для характеристики веществ приводятся величины Bf, иногда зшно-женные на 100 (hBf). Следует особенно подчеркнуть, что эти данные являются лишь ориентировочными. Для упрощения в случае комбинированных растворителейесли-это специально не оговорено — всегда приводятся четные объемы, причем сумма в большинстве случаев составляет 100 мл (заполнение нормальной разделительной камеры). [c.139]

    В связи с высокими ценами на органические растворители при выборе хроматографической системы для разделения фенолов необходимо принимать во внимание соотношение между стоимостью и эффективностью той или иной процедуры. Обращаясь к какому-либо новому методу разделения, нецелесообразно отказываться от уже существующих как от безусловно худших, особенно если они дешевле. Лигнаны, давно известные как соединения растительного происхождения, совсем недавно обнаружены и в тканях животных [142, 143]. Здесь следует отметить, что, хотя эти соединения можно разделить с помощью ВЭЖХ 144], авторы работ [142, 143] отдают предпочтение методу ГЖХ (лигнаны хроматографируют в виде триметилсилиловых эфиров на колонке с 0V-1 на газохроме Q). Вероятно, такой выбор обусловлен возможностью применения ГЖХ в сочетании с масс-спектрометрией — надежным и чувствительным методом обнаружения анализируемых соединений. Кроме того, для очистки экстрактов авторы указанных работ использовали хроматографию на сефадексе LH-20 и в тонких слоях. Исходя из этого, можно заключить, что, поскольку в тканях живых организмов могут встречаться различные фенольные соединения, нельзя ориентироваться на какой-либо один метод разделения таких сложных смесей. По меньшей мере в обозримом будущем для решения конкретных проблем в данной области исследований придется использовать ряд различных методов хроматографии. [c.273]

    Таким образом, изменения в структуре молекулы се-русодержащего гетероциклического соединения непосредственно отражаются на его подвижности в тонких слоях. Тонкослойная хроматография, особенно в сочетании с другими методами, например спектроскопией, может быть использована для разделения, характеристики и идентификации таких соединений. [c.71]

    Рассмотрены последние достижения в области теории хроматографических процессов в тонком слое, особенности межмолекулярных взаимодействий и размывания в тонких слоях сорбента. Описан метод микротонкослойной хроматографии и применение хроматогрчфии в тонком слое для исследования полимерных систем. [c.296]

    В некоторых случаях тонкослойный электрофорез превосходит электрофорез на бумаге и тонкослойную хроматографию. Так, например, предложенный в работе [102] метод дает гораздо меньший разброс результатов при анализе РЗЭ, чем электрофорез на бумаге и ТСХ. В упомянутой работе авторами было показано, что на тонких слоях ацетилцеллюлозы (0,24—0,30 мм), предварительно в течение 1 часа пропитанных 0,2—0,4 М раствором а-оксиизомасляной кислоты, электрофоретическим методом хорошо разделяются все РЗЭ и особенно тяжелые (сила тока 8,2—8,7 ма, градиент потенциала 40— 80 б1см). Пятна РЗЭ тем компактнее, чем меньше количество нано- [c.128]

    Хроматография в тонких слоях удобна для общей проверки стадий синтеза и этапов разделения и очистки в химии металлоценов, и особенно ферроцена [58]). [c.57]

    Для повышения надежности идентификации 2,4-Д, особенно при анализе проб с неизвестными обстоятельствами загрязнения, целесообразно после проведения газо-хроматографического определения содержания гербицида оставшуюся часть пробы анализировать с помощью тонкослойной хроматографии. Для этого гексановый экстракт наносят на хроматографическую пластинку (9X12 см) с тонким слоем силикагеля КСК, рядом наносят 2—10 мкг метилового раствора 2,4-Д в виде раствора в гексане и хроматографируют в системе растворителей гептан — ацетон (9 3). Далее поступают так, как это описано выше. Величина Rf метилового эфира 2,4-Д 0,46—0,47. [c.182]

    В большинстве случаев разделение, достигаемое посредством аналитической ТСХ, можно перевести на микро- или полу-микропрепаративный уровень. Препаративное разделение на тонких слоях чаще всего проводят методами адсорбционной и распределительной хроматографии, тогда как препаративное разделение методом ионообменной или колоночной хроматографии проводится только на колонках. Помимо препаративной тех существуют и другие методы препаративного разделения (например, классическая жидкостная хроматография и особенно высокоэффективная жидкостная хроматография, или хроматография при высоком давлении, см. гл. 4), которые в ряде случаев могут оказаться более эффективными. Методом сухой колоночной хроматографии (СКХ) можно проводить препаративное разделение в таких же условиях, которые применяются при разделении методом ТСХ [36]. Поэтому рекомендуется прежде всего проанализировать достоинства и недостатки различных типов и методов хроматографии и оценить целесообразность их применения для разделения конкретных соединений (устойчивых или неустойчивых, с близкими или значительно различающимися величинами Rf). Выбор метода зависит также от того, какие количества соединений и как быстро необходимо получить. [c.121]

    Нанесение проб анализируемого веш есгва на пластинку с тонким слоем сорбента. Нанесение проб является одной из самых ответственных операций тонкослойной хроматографии, особенность которой состоит в том, что исследуемый раствор наносят непосредственно на слой сорбента. Неточное нанесение заданного объема и размывание пятна в точке нанесения являются причиной ошибок анализа. [c.118]


Смотреть страницы где упоминается термин Особенности хроматографии в тонких слоях: [c.10]    [c.6]    [c.436]    [c.6]    [c.436]    [c.6]    [c.145]    [c.489]    [c.436]    [c.5]    [c.261]   
Смотреть главы в:

Хроматография в тонких слоях -> Особенности хроматографии в тонких слоях




ПОИСК





Смотрите так же термины и статьи:

Хроматография особенности

Хроматография слоями

тонкой



© 2025 chem21.info Реклама на сайте