Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность в растворах неэлектролитов

    Согласно (1.18), концентрационная зависимость коэффициента активности растворенного вещества в растворах, содержащих только неэлектролит N, может быть выражена в виде ряда по степеням т . Часто это записывается так  [c.83]

    Неэлектролит. Определяют понижение температуры замерзания чистого растворителя, как описано выше. Затем на аналитических весах отвешивают анализируемое вещество в количестве, необходимом для получения раствора с концентрацией на 10— 20 % больше той, для которой требуется измерить коэффициент активности (концентрацию указывает преподаватель). Измеряют понижение температуры замерзания раствора при 4—5 концентрациях, вводя каждый раз в криоскоп примерно Д—Vs часть от навески. [c.356]


    Во многих случаях растворимость вещества значительно не изменяется при добавлении к раствору других соединений (в небольших концентрациях). Так, неэлектролит (недиссоциирующее вещество), подобный сахару или иоду, как правило, незначительно влияет на растворимость соли в воде, а соль, подобная нитрату патрия, оказывает небольшое влияние на растворимость иода в воде. Точно также присутствие соли, не имеющей общего иона с солью, растворимость которой рассматривается, оказывает лишь довольно небольшое влияние на растворимость последней, обычно несколько повышая ее такое небольшое повышение является следствием электростатического взаимодействия ионов в растворе, понижающего до некоторой степени их активность, как об этом говорилось в разделе 10 гл. XVI. [c.375]

    В целях упропдения мы выбрали для рассмотрения случай, когда электролит является бинарным. В тех случаях, когда молекула электролита нри диссоциации образует больше двух ионов, вывод несколько усложняется. Однако конечный результат остается неизменным. Концентрационная зависимость коэффициента активности неэлектролита, растворенного в электролите, имеет тот же вид, что и соответствующая зависимость д.тя электролита, растворенного в неэлектролите. Термодинамические свойства разведенных растворов неэлектролитов в электролитах должны быть сходными с аналогичными сво11ствами растворов электролитов в неэлектролитах, вытекающими из теории Дебая—Хюккеля. [c.448]

    Разработанная в [11] модель тройного раствора (вода-спирт-мало-растворимый неэлектролит) была применена для интерпретации зависимости растворимости иода от состава водно-спиртовой системы. В основе расчета лежит уравнивание активности иода в насыщенном спиртовом растворе и в разупорядоченной фазе насыщенного водного раствора, как если бы часть воды в воде была бесструктурной жидкостью. Расчеты показали затрудненность внедрения больших молекул иода в пустоты льдоподобного каркаса воды. В присутствии небольших количеств спирта разрушающее влияние иода на каркас усиливается. [c.14]

    Далее закономерности экстракционных равновесий будут рассматриваться на примере экстракции нитратов уранила и других актинидов нейтральными фосфорорганическимн соединен ниями, поскольку соответствующие равновесия наиболее под робно изучены и могут быть полностью описаны. Эти системы являются примером равновесия электролит — неэлектролит, при котором для преодоления ион-дипольного взаимодействия в водной фазе необходима химическая связь экстрагента с извле каемым соединением, однако связь достаточно слабая, чтобы не затруднить реэкстракцию (энергия взаимодействия <10 ккал1моль). Соответственно для интерпретации экстракционной способности растворителей необходимо привлечь тео рию химической связи, а в силу слабости химических взаимо- действий при описании зависимости равновесий от условий экстракции необходимо учитывать вклад вандерваальсовых (до 3 ккал/моль) и особенно электростатических взаимодействий в химический потенциал, т. е. коэффициенты активности соединен ний в обеих фазах . Это позволяет сделать теория растворов. Описание процессов в водной фазе должно производиться на основе теории растворов электролитов, в органической — с по мощью теории многокомпонентных растворов неэлектролитов. [c.11]


    При контакте ионита с водными растворами электролитов происходит его электролитическая диссоциация, обеспечивающая возможность ионного обмена. Иойный,обмен представляет собой стехиометрическое замещение в обмен на каждый эквивалент одного иона, поглощенного из раствора, ионит отдает в раствор один эквивалент другого иона с зарядом того же знака. Прн адсорбции, в отличие от обменного процесса, адсорбент поглощает растворенное вещество (электролит или неэлектролит), не отдавая в раствор никакого другого вещества. Хотя это различие и кажется достаточно отчетливым, на практике часто трудно провести границу между названными процессами, так как ионный обмен почти всегда сопровождается адсорбцией, а большая часть обычных адсорбентов, например активный уголь, силикагель, оксид алюминия и др., могут действовать как иониты. [c.73]

    Для иллюстрации последствий ионной диссоциации можно привести разнообразные примеры. Чтобы показать влияние диссоциации соляной кислоты, Льюис и др. [3] построили график зависимости парциального давления НС1, находящейся в равновесии с раствором, как от т, так и от т . Они построили также график понижения точки замерзания уксусной кислоты, из которого видно, что уксусная кислота ведет себя как неэлектролит, за исключением очень низких концентраций. То же бтмечено на рис. 14-1, показывающем изменение с концентрацией молярного коэффициента активности /д (определенного аналогично у ). Его поведение типично для неэлектролитов. Однако, если уксусная кислота действительно диссоциирует на ионы водорода и ацетата при бесконечном разбавлении, величина - -d x /л/ 1п с должна стремиться к 2 по мере приближения с к нулю. Наблюдаемое поведение уксусной кислоты обусловлено ее малой константой диссоциации, вследствие чего уксусная кислота почти [c.48]

    Дальнейший ход изотерм экстракции определяется коэффициентами активности соединений в водной и органической фазах. Рассмотрим, например, случай наиболее распространенных равновесий электролит — неэлектролит. Если бы раствор был идеальным в органической фазе (уорг = 1 = onst), то изотерма экстракции описывалась бы уравнением у = Каводи, т. е. повторяла в измененном масштабе зависимость активности электролита в водной фазе от его концентрации (см. пунктирную кривую на рис 8, б). При положительной неидеальности в органической фазе (например, за счет димеризации) уорг будет падать с концентрацией (ср. рис. 1, б) и изотерма экстракции будет лежать выше идеальной кривой (кривая 1 на рис. 8, б) . Наоборот, при отрицательной неидеаль- [c.25]


Смотреть страницы где упоминается термин Активность в растворах неэлектролитов: [c.494]    [c.494]    [c.137]   
Смотреть главы в:

Химический анализ -> Активность в растворах неэлектролитов




ПОИСК





Смотрите так же термины и статьи:

Активность раствора

Активные в растворах

Неэлектролиты

Растворы неэлектролитов

СТАТИСТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА КОЭФФИЦИЕНТА ТЕРМОДИНАМИЧЕСКОЙ АКТИВНОСТИ В РАЗБАВЛЕННЫХ РАСТВОРАХ НЕЭЛЕКТРОЛИТОВ



© 2025 chem21.info Реклама на сайте