Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракционная способность

    Предположения сводятся к тому, что экстрагент — донор электронов — тем эффективнее, чем выше электронная плотность на функциональном атоме и чем слабее этот атом связан с остальной частью молекулы, ибо тогда выше его способность образовывать координационную связь. Например, в настоящее время принято, что экстракционная способность фос-форорганических экстрагентов определяется донорными свойствами группы Р=0, т. е. электронной плотностью на атоме кислорода [63]. Установлено наличие корреляции экстракционной способности с полярностью связи Р=0 для ряда фосфорорганических соединений [64], а также с электроотрицательностью групп-заместителей, входящих в состав фосфорорганических соединений, аминов и органических кислот [60, 61]. Ответственной за экстракционную способность, считается энергия связи Р=0, которая определяет длину связи, следовательно, и электронную плотность на атоме кислорода, частоту колебаний Р=0 связи в ИК-спектре и полярность [c.16]


    Следует отметить, что, как и можно было ожидать, диэтиловый эфир и этилацетат имеют низкую экстракционную способность. Менее понятны плохие характеристики хлорбензола и о-дихлорбензола. Эти растворители часто используют в тех случаях, когда существует опасность побочных реакций с хлороформом или дихлор мета ном. Вовсе не обязательно исключать, растворитель с низкой константой экстракции как неподходящий, однако его применение означает, что в любой данный момент во время реакции лишь небольшая часть теоретически возможного количества ионных пар присутствует в органической фазе, и, следовательно, реакция будет идти в таких растворителях медленнее. Впрочем при использовании более крупных, более липофильных катионов (см. следующий раздел),, этот эффект в некоторой степени нейтрализуется. [c.26]

    При исследовании экстракционной способности водных растворов серной кислоты было установлено, что при определенной концентрации она отлично растворяла сульфиды, не затрагивая сернистые соединения иного строения, а также углеводороды, в том числе ароматические. использования серной кислоты как экстрагента [c.132]

    Ясно, что один и тот же порядок проявляется в различных апротонных растворителях. Это естественно для разбавленных растворов, где различия в энергии сольватации для анионов Х и в органических растворителях и воде являются главными факторами, определяющими экстракционную способность. Однако для некоторых использованных солей (поскольку применялись различные катионы) границы растворимости в любой фазе, а также способность к гидратации, диссоциации и ассоциации могут изменить порядок экстракционной способности. Один из этих факторов, вероятно, обусловливает неожиданное положение бензоата в приведенной выше серии (ср. с табл. [c.30]

    Значительное количество побочных продуктов, получаемых в результате синтеза диметилдиоксана, не было учтено в исходных данных, используемых при проектировании, а свойства их не изучены. Это привело к отклонению от принятых для расчета в проекте таких свойств выделяемых фракций, как температура их кипения, растворимость в воде, экстракционная способность, способность к смолообразованию, образованию твердых полимеров и вспениванию. Следствием этого явилось нарушение проектного режима по стадиям, в том числе на установке очистки сточных вод. [c.172]

    Из данных первой и второй колонок табл. 1.1 следует, что имеет место большое различие в экстракционной способности растворителей при, казалось бы, малых структурных изменениях (сравните цис- и транс-1,2-дихлорэтилен, 1,1,2-трихлорэтан, 1,1,2,2-тетрахлорэтан и пентахлорэтан). Специфические взаимодействия между растворителем и растворенным веществом должны играть определенную роль даже в таких предположительно несольватирующих растворителях. С практической точки зрения еще более важно, что низкокипящие хлорированные углеводороды (хлороформ, дихлорметан и в меньшей сте- [c.24]


    Для извлечения веществ, плохо растворимых з воде, экстрагент выбирают из неполярных растворителей, таких как петролейный эфир, бензин, циклогексан, четыреххлористый углерод и т. д. Вещества, обладающие средней растворимостью в воде, извлекают бензолом, хлороформом, дихлорэтаном, хлористым метиленом, эфиром. Успешное экстрагирование хорошо растворимых в воде соединений может быть осуществлено растворителями с высокой растворяющей способностью — этилацетатом, бутилацетатом, бутиловым спиртом и др. Часто смеси растворителей обладают более высокой экстракционной способностью, чем чистые растворители в отдельности. [c.124]

    Экстракционная способность ЗОд может быть увеличена путем добавки хлористого алюминия, фтористого бора или кислот [68]. [c.402]

    Выявлена высокая экстракционная способность нефтяных сульфоксидов (т. е. продуктов окисления нефтяных сульфидов) по отношению к солям урана (уранила) и неодима. Эффективные коэффициенты экстракции уранилнитрата нефтяными сульфоксида-мй достигают 3600—4800 [587], причем циклические сульфоксиды обладают лучшими экстракционными свойствами, нежели алифатические. Емкость 50%-ных растворов нефтяных сульфоксидов в л -ксилоле по нитрату неодима достигает 100—120 г/л [588]. [c.81]

    Однако круг применяемых в настоящее время экстрагентов узок (в основном это трибутилфосфат, ди-2-этилгексилфосфорная кислота, амины) и недостаточен для применения в промышленности редких и цветных металлов. Применение экзотических экстрагентов в технологии благородных металлов и ядерного горючего оправдывается большой стоимостью данных продуктов, но это не оправдано в технологии цветных металлов. Поэтому весьма актуальным представляется поиск и синтез новых экстрагентов, обладающих высокой экстракционной способностью, селективностью, химической стойкостью и одновременно достаточно дешевых, пригодных для крупнотоннажных производств. [c.37]

    При извлечении гидролизованных форм металлов экстракционная способность сульфоксидов значительно выше ТБФ. [c.41]

    Основность (рК) и экстракционная способность (К) сульфоксидов и ФОС [c.44]

    С целью сопоставления экстракционной способности сернистого ангидрида по отношению к индивидуальным сераорганическим соединениям и ароматическим углеводородам в данной работе изучалось фазовое равновесие. На примере экстракции из трех нефтяных фракций прослежено распределение сульфидной и остаточной серы и рассмотрена возможность применения сернистого ангидрида для производства концентратов нефтяных сераорганических соединений. [c.219]

    По экстракционной способности в отношении солей серебра нефтяные сульфиды близки к индивидуальным диалкилсульфидам. [c.342]

    Экстракция органическими растворителями (сольвентная экстракция) — один из важнейших способов лабораторного и промышленного выделения ГАС из углеводородных систем. В качестве растворителей, позволяющих отделять ГАС от углеводородов, испытано большое число полярных органических соединений (фенолы, нитробензол, нитрофенол, анилин, фурфурол, низшие кетоны и спирты, ацетофенон, ацетил-фуран, ацетилтиофен, диметилформамид, ацетонитрил, диметил-сульфоксид и др. [58—63]), но ни одно из них не дает четкого разделения, и полученные экстракты, как правило, содержат значительную долю полициклоароматических углеводородов. Для повышения эффективности разделения экстракция часто проводится в системе, содержащей два сольвента, не смешивающиеся между собой или обладающие ограниченной взаимной растворимостью пропан и фенол [64], циклогексан и диметилформамид [65] и т. д. Экстракционная способность полярных растворителей по отношению к отдельным группам нефтяных ГАС может существенно различаться. Так, диметилформамид экстрагирует из масляных дистиллятов карбоновые кислоты в 7—8 раз эффективнее, чем сернистые соединения [66 ]. Однако практически использовать эти различия для четкого фракционирования ГАС на отдельные типы чрезвычайно трудно, в связи с чем методы сольвентной экстракции обычно служат средством отделения суммы ГАС или грубого разделения высокомолекулярных ГАС в соответствии со средней полярностью их молекул (не по функциональному признаку) [67-69]. [c.10]

    Дифенилсульфид по своей экстракционной способности лишь немногим превосходит 3-метилтиофен. [c.189]

    Электронодонорная способность атомов серы, входящих в состав тиофеновых циклов, низка, поэтому тиофены не способны к образованию прочных связей Ме—8 и не проявляют заметной экстракционной способности. Найдено, что золото, палладий и серебро практически не экстрагируются из водных сред 3-метил-тиофеном [4]. В связи с этим может представить практический интерес увеличение ресурсов нефтяных тиацикланов за счет ионного гидрирования тиофеновых производных [589]. [c.81]

    Высокая экстракционная способность нефтяных сульфидов, их избирательность, большая емкость и доступность позволяет рекомендовать нефтяные сульфиды для аффинажа благородных металлов и их концентрирования. [c.192]


    Частичный или полный обмен аниона неоднократно проводился путем эквилибрирования органического раствора четвертичной аммониевой соли [Q+X ] с водным раствором Ыа . На основе этих исследований можно построить щкалу липофильности. Клиффорд и Ирвинг [63] установили следующий порядок экстракционной способности ионов, начиная с липофиль-ного иона С1О4 и кончая гидрофильным ионом Р04 , для системы хлороформ/вода  [c.30]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]

    Данные об экстракционной способности в ряду [c.18]

    Экстракционная способность аминов связана с их основностью, обусловленной наличием у атома азота подвижной неподеленной пары электронов, способной образовывать координационные связи с молекулами других соединений [71]. Амины и четвертичные аммониевые основания (ЧАО) могут участвовать в реакциях экстракции в виде свободных оснований или солей. Для экстракции кислот могут быть выделены следующие основные типы реакций аминов и ЧАО  [c.18]

    В случае метиленхлорида можно показать, что Bu4N+0H-может экстрагироваться в некоторой степени из свежеприготовленного водного раствора. Однако титр раствора быстро уменьшается вследствие реакции с растворителем [67]. Если раствор бисульфата тетрабутиламмония находится в равновесии с концентрированным гидроксидом натрия, то этим растворителем экстрагируется заметное, но быстро уменьшающееся количество Ви4Н+0Н . Это согласуется с порядком экстракционной способности 0Н >8042 . Уже через 10 мин из гидроксида аммония получается 67% хлорида в результате взаимодействия с растворителем [67]  [c.35]

    При выборе органического растворителя можно руководствоваться некоторыми общими указаниями. Для экстракции неорганических солей из воды пригодны соединения с умеренной растворимостью в воде и небольшой молекулярной массой. Для некоторых солей и слабо растворяющихся в воде органических растворителей можно составить ряд в направлении уменьшающейся экстракционной способности хлороформ, о-дихлорбензол, бензол, толуол, че-тыреххлористый углерод, циклогексан, н-гексан. Для солей, образующих комплексы, и растворителей типа доноров (кетоны, эфиры) составить такой ряд для всех металлов невозможно. Известно, например, что для Ре , Аи и Оа существует следующая последовательность (начиная с высшей) метилизопропилкетон, метилизобутилкетон, фурфурол, этилацетат, этиловый эфир, изопентиловый спирт, изоамилацетат, р-хлорэтиловый эфир, изопропиловый эфир, углеводороды. Для других металлов будет совсем иная последовательность. Некоторые задачи были рассмотрены в 3 и 4. [c.425]

    Относительно форм суш ествования Ад и Ли в нефти информация весьма ограничена. Имеются сведения о концентрировании этих элементов в остатках от перегонки нефти [786]. Отмечается высокая экстракционная способность асфальтосмолистых компонентов по отношению к этим элементам [918 ]. Такие факты, а также способность гуминовых кислот растворять Ад и Аи с образованием внут-рикомплексных соединений [928] не исключают возможности существования соединений А и Аи в смолах и асфальтенах в виде комплексов с тетрадентатными лигандами. [c.172]

    Экстракционная способность асфальтосмолистых соединений нефти по отношению к элементам подгруппы меди может обусловливать обогаш,ение нефти этими элементами за счет контакта с пластовыми водами. И хотя содержание этих элементов в пластовых водах и во вмеш,ающих породах незначительно, показано, что их концентрация повышена в нефтях приконтурной зоны по сравне- [c.172]

    Сольватное число для уранилкитрата, нитратов циркония равно 2, 120] для редкоземельных равно 3 [23], для нитрата тория равно 2 и 3 122]. По нашим данным, диалкилсульфоксиды образуют с нитратом тория преимущественно дисольват, и только при наличии концентрации свободного экстрагента, в несколько раз большего, чем сольвата, образуется трисольват циклические сульфоксиды образуют дисольват, трисольват нами не был обнаружен, что связано, по-видимому, со стерическими препятствиями. Согласно [12], экстракционная способность диалкилсульфоксидов выше, чемТБФ[Ки 150], а циклические превосходят диалкилсульфоксиды (Ки = 4000—8000). Экстракция сульфоксидами нитратов металлов в зависимости от концентрации азотной кислоты проходит через максимум. Уменьшение экстракции при больших концентрациях азотной кислоты связано с соэкстракцией азотной кислоты, т. е. с падением активности экстрагента. [c.39]

    Произведенный расчет показал, что электронная плотность на атоме серы не зависит аг сгроения молекулы сульфоксида и во всех 3-сульфоксидах одинакова (да + 0,50), что хорошо согласуется с экспериментальными данными. Наиболее ярко выраженная донорная способность у р-орбиталей кислорода, наименьшая — непо-деленная л-электронная пара. Электронная плотность на кислороде без учета влияния кольца практически постоянная и не кор-релируется с экстракционной способностью сульфоксидов различного строения. [c.42]

    В ИК-спектрах комплекса сульфоксидов с хлоридом палладия не ыло замечено сдвига частоты колебаний 50-группы от перво- начальной, на основании этого было сделано предположение о координации палладия в этом комплексе через серу. Данное предположение сорошо согласуется с результатами других работ 123]. При снятии ИК- спектров сульфоксидов различного строения было замечено отсутствие корреляции частоты колебаний 80-группы в зависимости от строения сульфоксидов, что не позволяет связать непосредственно экстракционную способность сульфоксидов с энергией 50-связи. В связи с этим нами предпринята попытка связать экстракционную способность сульфоксидов с основностью, что позволяет одновременно более четко установитьположениесульфоксидов в ряду органических окисей. Для определения основности сульфоксидов, ТБФ и ДАМФ применялась методика Тафта. [c.43]

    Содержание серебра оценивается в 10 —10 %, золота до 10 %. Имеются данные относительно высокой экстракционной способности САВ относительно этих элементов, что может при-1зест11 к обогащению нефти этими элементами за счет контакта с пластовыми водами. [c.308]

    В работе [122] показано, что индивидуальные сульфиды являются эффективными экстрагентами солей золота (III), палладия (II), серебра, ртути (И), платины (IV) и теллура (III). Палладий и золото количественно извлекаются диалкилсульфидами из соля-H0-, азотно- и сернокислых растворов в виде комплексов типа [РёСЬ-Зг] и [Au b-S], где S — сульфидный экстрагент. Экстракционная способность практически не изменялась при увеличении молекулярной массы сульфидов. По эффективности и избирательности извлечения сульфиды принадлежат к одним из лучших экстрагентов золота, палладия и серебра. Высокие экстрак-. ционные свойства сульфидов используются в аналитической химии для отделения примесей при нейтронно-активационном, атомноабсорбционном и полярографическом анализе золота, палладия, серебра. [c.342]

    Сульфоксиды являются эффективными экстрагентами уранил-нитрата, нитратов тория, циркония, хлорида теллура [131]. Индивидуальные диалкил- и циклоалкилсульфоксиды по экстракционной способности превосходили трибутилфосфат и другие фосфор- [c.343]

    Влияние строения радикала сульфида на его экстракционную способность. Удлинение углеводородного радикала сульфида чаще всего сопровождается небольшим понижением его экстракционной способности. Наиболее детально эта зависимость исследована при экстракции диалкилсульфидами палладия из солянокислотных растворов. В этом. случае в ряду ди-н-алкилсудьфидов (С Н2 +1)23 при постоянном составе водной фазы Ig а линедно зависит от п [12]. Так, при экетрй1 ЦйИ из 0,1 М НС1 для и от 4 до 8 1д а = [c.186]

    Небольшое ослабление экстракционной способности при удлинении радикала наблюдается также при экстракции палладия из азотнокислотных, золота из соляно-кислотных и платины из азотно- и солянокислотных растворов. В то же время при экстракции платины из сернокислотных растпорог. оптимальным является радикал С12 (ди-н-гексилсульфид). Прп экстракции азотнокислого серебра значения для бензольных растворов ди-к-бутил-, ди-к-гексил- и ди-н-октилсульфида практически совпадают, т. е. длина радикала не оказывает заметного влияния на эффективность экстракции. [c.186]

    Авторы рассмотренных работ не связывали экстракционную способность нефтепродуктов с содержанием в них серы и без достаточных на то оснований предполагали, что золото экстрагируется в виде НАпС14. При сопоставлении свойств дизельного топлива как экстрагента со свойствами органических сульфидов можно заключить, что активным действующим началом при экстракции золота и серебра являются именно сульфиды. Природа действующего начала трансформаторного масла не столь определенна, так как органические сульфиды, если они в нем присутствуют, должны были бы экстрагировать пз солянокислотных растворов не только золото, но и палладий. [c.190]

    Из. азотнокислотных растворов золото (1П) экстрагируется гораздо слабее, а палладий, напротив, сильнее, чем нз солянокислотных. Экстракционная способность ДОС н ДОСО по отношению к палладию в азотнокислотных растворах практически совпадает. С увеличением концентрации HNO3 от 0,1 до 6 М при экстракции 0,4 М раствором ДОСО в бензоле коэффициент распределения палладия падает с 590 до 170, коэффициент распределения платины (IV) с 0,78 до 0,21, а для иридия он составляет около 1-10" . При низких кислотностях растворов ДОСО помимо Pd и Аи эффективно экстрагирует ртуть. Экстрагируемость серебра невелика, но, в отличие от ртути, она возрастает с увеличением концентрации HNO3 в водной фазе. Хотя ДОСО экстрагирует ртуть и серебро слабее, чем ДОС, коэффициент распределения этой пары при переходе к ДОСО увеличивается до 1000. [c.194]

    Сообщается [25], что увеличение основных свойств-экстрагентов (до известного предела) способствует образованию более прочной координационной связи с экстрагируемым металлом и тем самым усилению экстракционной способности. Дальнейшее повышение основности приводит к изменению хамого механизма экстракции. Основность при переходе от (КО)зРО к КаЗО возрастает незначительно, что позволяет ожидать от К ЗО лучших экстракционных характеристик по сравнению с ТБФ. [c.195]

    В ЯМР-спектре по сольватному сдвигу на фосфоре можно судить об экстракционной способности фосфорорганических соединений она тем больще, чем больще химсдвиг [65]. Введение электроотрицательных (электрофильиых) заместителей в фосфорорганические соединения, простые эфиры и амины, благодаря индукционному эффекту, приводит к снижению электронной плотности на активном атоме и к снижению экстракционной способности. Наиболее электроотрицательными считаются группы F, С1, I3, RO. Замена этих групп на менее электрофильные, например алкильные, повышает электронную плотность на координационно-активном атоме. [c.17]

    Сульфоксиды по механизму извлечения аналогичны фос-форорганическим соединениям, по экстракционной способности они близки к фосфрнатам. В работах [69, 70] показана возможность извлечения монохлоруксусной и пропионовой кислот сульфоксидами. [c.18]


Смотреть страницы где упоминается термин Экстракционная способность: [c.170]    [c.26]    [c.36]    [c.450]    [c.43]    [c.50]    [c.173]    [c.343]    [c.184]    [c.189]    [c.195]    [c.196]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте