Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение вещества

    Вант-Гофф впервые стал известен в ученом мире благодаря открытию тетраэдрического атома углерода (см. гл. 7), однако впоследствии он занялся физической химией и стал крупнейшим (после Оствальда) авторитетом в этой области химии. Вант-Гофф занимался, в частности, изучением растворов. К 1886 г. ему удалось показать, что поведение молекул растворенных веществ, беспорядочно перемещающихся в массе жидкости, в которой они растворены, описывается примерно теми же правилами, что и поведение газов. [c.116]


    П )и растворении вещества в кислотах могут выделяться газы — СО2, Н2, H2S и другие, увлекающие за собой капельки раствора, что приводит к потере вещества. Поэтому растворение нужно проводить весьма осторожно, накрывая стакан, в котором происходит растворение, часовым стеклом. Кислоту лучше добавлять через маленькую воронку с изогнутой трубкой, вставляя ее под часовое стекло через носик стакана, или с помощью пипетки, также вводя ее через носик стакана под часовое стекло. Попавшие на стекло брызги жидкости по окончании растворения смывают в стакан струей воды из промывалки. [c.137]

    Химическая теория растворов Д. И. Менделеева. Жидкие растворы, как и индивидуальные жидкости, обладают внутренней структурой ближнего порядка. При этом структура разбавленных растворов близка к структуре растворителя, а концентрированных — к структуре растворенного вещества. [c.127]

    При высоких давлениях, в особенности когда плотность газа становится сравнима с плотностью жидкости, образование газовых растворов сопровождается изменением объема и тепловым эффектом. Механизм растворения веществ в сжатых газах принципиально не отличается от механизма растворения в жидкости. В сжатых газах растворение веществ достигает значительных величин. Так, при l 10 Па и 100"С азот растворяет до 10 молярных долей бензина (%), а этилен при 2,4-10 Па и 50° С — до 17 молярных долей нафталина (%). Сжатые газовые растворы используются в технике для синтеза некоторых минералов. Например, растворимость кварца при высоких температурах в сжатом водяном паре, насыщенном некоторыми солями, используется для выращивания крупных (массой до нескольких килограммов) кристаллов. [c.126]

    За внешней плоскостью Гельмгольца располагается диффузный слой с потенциалом, изменяющимся от г )г до нуля и с плотностью заряда, совпадающей с <72. Схематическое изображение строения двойного слоя по Грэму для незарял енной поверхности, заряженной отрицательно п положительно, дано на рис. 12.5. В соответствии с допущением Грэма о том, что следует считаться лишь с поверхностной активностью анионов (в системах, не содержащих органических растворенных веществ), в первой плоскости Гельмгольца находятся только специфически адсорбирующиеся анионы, причем их поверхностная концентрация растет при переходе от незаряженной поверхности (рис. 12.5, а) к заряженной положительно (рнс. 12.5, б). Грэм подчеркивает, чго это увеличение концентрации следует отнести прежде всего за счет упрочнения ковалентной связи, а не за счет сил кулоновского взаимодействия. При достаточно отрицательном заряде поверхности (рис. 12,5, в) во внутреннем слое Гельмгольца остается лишь растворитель, и заряд его, так же как н в растворе, не содержащем поверхностно-активных [c.271]


    Результаты этих опытов убедительно свидетельствовали о том, что оптическая активность связана с асимметрией. Однако асимметрия наблюдалась у кристаллов, а многие вещества проявляли оптическую активность как в кристаллическом состоянии, так н в растворах. При растворении веществ происходит разрушение упорядоченной упаковки молекул в кристаллах, и в растворе вещества находятся в виде отдельных беспорядочно перемещающихся молекул. Если оптическая активность обусловлена асимметрией, то асимметрична должна быть и сама структура молекул. [c.87]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]

    Идея о распаде вещества в растворе на ионы была высказана Сванте Аррениусом (1857). Основоположниками современной теории электролитической диссоциации как процесса, вызываемого сольватацией молекул, являются И. А. Каблуков и В. А. Кистяковский. В отличие от гипотезы ионизации С. Аррениуса, не учитывающей взаимодействие растворенного вещества с растворителем, в их тео-[ ии к объяснению электролитической диссоциации привлекается имическая теория растворов Д. И. Менделеева. [c.128]

    Однако нужно иметь в виду, что понятия кислота и осио в теории электролитической диссоциации, предназначались тол растворов и не характеризовали возможность химического вза жду растворенным веществом и растворителем. Сейчас сложил представления о кислотах и основаниях, так как стало ясно, чп основания существуют не только в водных растворах, но и в р сителями кислотных и основных свойств могут быть молекулы висимости от кислотности пли основности растворителя одно и может быть как кислотой, так и основанием. По теории Брен(1 ваемля протолитическая теория) кислотами являются веществ [c.233]

    Кулонометрическое титрование в аппаратурном оформлении сложнее, чем титрование с индикаторами или потенциометрическое титрование. Поэтому кулонометрия не находит щирокс-го применения в практике обычного химического анализа. Однако она используется в тех случаях, когда бывает необходимо определить микроколичества растворенных веществ, а также при проведении автоматического титрования. Приготовлен. и использование очень разбавленных титрованных растворов для объемного определения малых количеств растворенных веществ связано со значительными ошибками и неудобствами в работе. При кулонометрическом титровании необходимость применения таких титрованных растворов отпадает, так как определяемое вещество либо подвергается превращению непосредственно на электроде, J ибo титруется реагентом, генерируемым на одном из электродов в самой анализируемой пробе. В каждом из этих двух случаев определение ведется по израсходованному количеству электричества, измерение которого даже в малых дозах можно проводить с большой точностью. [c.286]

    Адсорбционные явления играют очень важную роль в кинетике почти всех электродных процессов. Условия адсорбции растворенных веществ на поверхности электрода во многом определяются зарядом его поверхности, т. е. в первом приближении его потенциалом в приведенной шкале — шкале, основанной на нулевых точках. Поэтому понятен тот интерес, кото )ый проявляется к методам определения нулевых точек. [c.255]

    Концентрацию растворов в титриметрическом анализе часто выражают через титр, т. е. указывают, сколько граммов растворенного вещества содержится в I мл раствора. Еще удобнее выражать их через нормальность. [c.210]

    Адсорбция. При адсорбции загрязняющее вещество находится на поверхности твердой фазы, которая называется в этом случае адсорбентом. Для аналитической химии особенно важное значение имеет адсорбция растворенных веществ из растворов, открытая Т. Е. Ловицем в конце ХУП1 века. [c.110]

    Течение описанных процессов, схематически изо-брал<енных на рис. 14, связано, очевидно, с диффузией растворенного вещества от мелких кристаллов к крупным. Диффузия же происходит при комнатной температуре очень медленно. Повышение температуры вызывает увеличение скорости диффузии, а также повышает растворимость, и поэтому ускоряется процесс созревания осадка. Точно так >се действует и перемешивание раствора. Следовательно, указан- ый процесс выгодно вести, поместив стакан с осадком в теплое место (например, на кипящую водяную баню) и время от времени перемешивая содержимое его. [c.104]


    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    В жидких растворах частицы растворенного вещества связаны с окружающими их частицами растворителя. Эти комплексы называются сольватами, а для водных растворов гидратами. Подобное представление о растворах возникло еще в 60-х годах XIX в. в результате работ Д. И. Менделеева. На основании экспериментальных фактов он выдвинул предположение о существовании в растворах определенных химических соединений растворенного вещества с водог. Эта идея составила основу химической теории растворов. Химическая теория растворов принципиально отличается от фи-зическсй теории, которая рассматривала растворитель как инертную среду и приравнивал,а растворы к простым механическим смесям [c.127]

    Далее Грэхем перешел к изучению диффузии растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару или сульфату меди, проходят через разделяющую перегородку из пергаментной бумаги (имеющей, как он предполагал, микроскопические поры). В то же время растворы таких соединений, как гуммиарабик, животный клей и желатина, пройти через разделяющую перегородку не могут — очевидно, молекулы соединений последней группы для этого слишком велики. [c.128]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа молей ионизированного вещества к оби ему числу молей растворенного. Степешз ионизации в основном определяется электронно-донорными и электронно-акцепторными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи Н2О. .. H I в донорно-акцепторную [Н гО—Н]+  [c.128]

    Мольная доля (ра- число молей растворенного вещества N  [c.74]

    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    Эта зависимость, известная нам как закон Рауля, позволила приблизительно подсчитать относительное число частиц (атомов, молекул или загадочных ионов) растворенного вещества и растворителя (жидкости, в которой растворено данное веш,ество). [c.119]

    Наблюдая за изменением потенциала в ходе электроанализа, можно выбрать такое его значение, которое обеспечив.зе необходимую точность определения содержания растворенного вещества. [c.284]

    Адсорбция объясняется тем, что ионы или молекулы, расположенные на поверхности твердой фазы, находятся в иных условиях, чем частицы, лежащие внутри нее. В то время как эти частицы связаны с соседними по всем направлениям, так что действующие между ними силы взаимно уравновешиваются, у частиц поверхностного слоя уравновешены только силы, направленные внутрь вещества и лежащие в плоскости самой поверхности. Поэтому на поверхности создается свободное силовое поле, и частицы могут притягивать к себе ионы или молекулы растворенных веществ. [c.110]

    Для растворов, содержащих только одно растворенное вещество (бинарные растворы), эти соотношения упрощаются (см. табл. 3.3). [c.75]

    Рассмотрим газовую фазу, мольная доля абсорбируемого компонента в которой равна у, находящуюся в контакте с жидкой фазой. Концентрация нелетучего растворенного вещества в жидкой фазе, способного вступать в мгновенную реакцию с абсорбируемым компонентом, равна Ьо. Уравнение скорости абсорбции имеет вид [c.101]

    Прежде всего рассмотрим возможные величины Я. Правдоподобно предположить, что в любой практической обстановке > 1, а именно, что концентрация реагирующего растворенного вещества в жидкости на входе в абсорбер намного превышает физическую растворимость абсорбируемого компонента, соответствующую составу газа также на входе его в абсорбер. При проектировании колонны расход жидкости выбирают таким образом, чтобы едва выполнялось условие (9.7), действительно, уходящая из абсорбера жидкость должна содержать как можно меньше непрореагировавшего растворенного реагента. Имея в виду условие (9.7), можно сделать вывод, что Л1 С 1. [c.105]

    Берут на аналитических весах точную навеску соответствующего вещества, растворяют ее н мерной колбе и доводят объем раствора водой до метки. Зная массу растворенного вещества (g) и объем полученного раствора (I/), нетрудно вычислить его титр. Он равен, очевидно  [c.215]

    Пример 6. В каком объеме 1 н. раствора содержится столько же растворенного вещества, сколько в 30 мл 0,2 н. раствора  [c.221]

    При бесконечно большом разбавлении силы взаимодействия между частицами растворенного вещества становятся исчезающе малыми, активность в этих условиях совпадает с концентрацией  [c.76]

    Д. я больншпства растворов v имеет порядок 10 м -с . Передача растворенного вещества от слоя к слою, т. е. его диффузия, определяется коэффициентом диффузии D порядок которого составляет обычно 10 м -с-. Таким образом, передача движения является более эффективной, чем передача растворенного вещества диффузней, и поэтому при сопоставимых значениях DuwD градиент скорости может быть меньше, чем градиент концентрации, т. е. толщина слоя Прандтля должна быть больше, чем толщина диффузионного слоя брг>б. Существует следующее соотношение между этими величинами  [c.311]

    Упражнение Х.2. Реакция между растворенными веществами А и В, находящимися в стехиометрических пропорциях, проводится периодически до 90%-го превращения. Кинетика реакции определяется выражением  [c.311]

    Физический смысл этого эмпирического множителя, называемого изотопическим фактором, оставался до создания теории электролитической диссоциации совершенно неясным. По теории Аррениуса изоторн1ческий фактор появляется как естественный рез) Л1>-тат электролитической диссоциации, увеличивающей общее число частиц растворенного вещества. Изотонический фактор должен быть поэтому функцией степени электро-пнтической диссоциации. Действительно, пусть молекула электролита распадается при диссоциации на V ионов, тогда прн степени диссоциации а истинное число часгиц, определяемое произведением 1с (где с —. молярная коицеитрацня электролита), равно [c.37]

    Решение. В 55 было показано, что произведение объема раствора иа его нормальность представляет собой число миллиграмм-эквивалентов соответствующего вещества в этом объеме раствора. Если раствор разбавлять, то его объем и нормальность будут изменяться, но общее количество мнллиграмм-эквивйлентов растворенного вещества останется постоянным. Отсюда следует, что п )И разбавлении раствора, как и при титровании, оказывается справедливым равенство  [c.221]

    Второй эффект, принятый во внимание Уэббом, связан с явлением электрострикции, т, е, сжатия, наблюдаемого при растворении, В результате электрострикции объем раствора становится меньше, чем сумма объемов чистого растворителя и растворенного вещества. На процесс сжатия расходуется некоторое количество энергии. Учет обоих эффектов приводит к тому, что величины энергий и теплот гидратации, вычисленные по формуле Борна — Уэбба, уменьшаются и приближаются к опытным, В теории Уэбба растворитель по-прежнему рассматривается ка ч непрерывная среда и не учитывается ни строение его молекул, пн структура жидкости. [c.56]

    Что такое адсорбция В чем причина адсорбции Какие осадки—кри-сталличиские или аморфные — больше адсорбируют на своей поверхности растворенные вещества Чем это объясняется  [c.159]

    Конвективная диффузия представляет собой перенос частиц растворенного вещества вместе с потоком движущейся жидкости. Движение жидкости -возникает при этом или самопроизвольно в результате неодинаковой плотности расгвора в отдельных его частях, т. е. в результате существования градиента плотности (Зр/с1л (естественная конвекция), или искусственн З при перемешивании и циркуляции (принудительная конвекция). [c.302]

    II 0,5 ПМ И Т. Д. Этот результат сстествгпио связать с образованием сольватного (гидратного) слоя. В пользу такого предположения говорит II изменение (обычно уменьшение) значения а с концентрацией. В результате сольватации ионэв моляльность, или моляльная доля, растворенного вещества повышается, что приводит к изменению его активности и, соответственно, коэффициента активности. Основываясь на подобных соображениях, Робинсон и Стокс (1959) вывели следуюпще уравиение для коэффициента активности Y , исправленного с учетом эффекта сольватации  [c.95]

    Известный шаг вперед по сравнению со всеми рассмотренными выше теориями представляет теория Харриота [31], хотя и она не дает адэкватного описания гидродинамической картины. Рассматривая массопередачу от твердой стеики к турбулентному потоку жидкости, Харриот исходит из представления о том, что не все турбулентные вихри, осуществляющие перенос растворенного вещества в глубь потока, могут проникать непосредственно на поверхность [c.175]


Смотреть страницы где упоминается термин Растворение вещества: [c.56]    [c.104]    [c.216]    [c.37]    [c.37]    [c.46]    [c.75]    [c.94]    [c.133]    [c.138]    [c.174]    [c.130]   
Смотреть главы в:

Курс аналитической химии Том 1 Качественный анализ -> Растворение вещества


Курс аналитической химии (2004) -- [ c.191 ]

Курс аналитической химии (1964) -- [ c.186 ]

Курс аналитической химии Издание 2 (1968) -- [ c.41 , c.227 ]

Курс аналитической химии Издание 4 (1977) -- [ c.272 ]

Количественный анализ Издание 5 (1955) -- [ c.98 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Аппараты для растворения твердых веществ в жидкостях

Влияние комплексообразования на степень растворения веществ в воде

Влияние минеральной части прибалтийских сланцев на превращение их органического вещества при термическом растворении и последующей переработке шламов процесса перегонкой до кокса. А. Б. Воль-Эпштейн

Влияние поверхностно-активных веществ на относительную скорость растворения

Влияние посторонних веществ на степень растворения соединений

Влияние растворения и электроосаждения металлов на концентрацию адсорбированного вещества

Вольфрам растворение с помощью комплексообразующих веществ

Жидкости растворение в них твердых веществ

Жидкости скорость растворения твердого вещества

Изотопные эффекты в теплоте растворения твердых и жидких веществ в тяжелой воде

Изучение кинетики растворения малорастворимых веществ

Крестов, В. К. Абросимов. Термодинамическая характеристика растворения газообразных и твердых веществ из данных по растворимости

Мера сродства веществ при растворении

Метод избирательного растворения веществ

Механизм растворения в воде веществ с различным типом химической связи

Механизм растворения твердых веществ в жидкостях. Гидратная теория растворов Д. И. Менделеева

Моющие синтетические вещества механизм растворения

Набухание и растворение высокомолекулярных веществ

Определение удельной теплоты растворения твердого вещества в жидкости (определение константы прибора по теплоте растворения КС

Очистка реактивов. Материалы химической посуды и аппаратуры. Растворение чистых веществ. Работа с разбавленными растворами

Поверхностно-активные вещества влияние на растворение металлов

Повышение температуры кипения при растворении нелетучего вещества

Получение ацетиленида меди и его растворение в соляной кислоте Процессы горения органических веществ

Понятие о растворах. Процесс растворения. Растворимость веществ

Предварительные испытания. Растворение сухого вещества

Процесс растворения твердых веществ

Процесс растворения твердых веществ в жидкости

РАСТВОРЕНИЕ ВЯЖУЩИХ ВЕЩЕСТВ

Равновесия при растворении веществ

Растворение анализируемого веществ

Растворение анализируемого вещества в воде, кислотах и щелочах

Растворение анализируемого вещества металлов

Растворение анализируемого вещества солей

Растворение анализируемого вещества сплавов

Растворение анализируемых веществ в кислотах

Растворение анализируемых веществ нерастворимых веществ

Растворение веществ в продуктах гидролиза

Растворение веществ, нерастворимых в кислотах

Растворение веществ, подвергнутых электрофорезу

Растворение вещества в воде

Растворение и органические поверхностно-активные вещества

Растворение и цветность вещества

Растворение кристаллических веществ

Растворение навески анализируемого вещества

Растворение не металлических веществ

Растворение полностью растворимых веществ

Растворение потери веществ

Растворение смолистых веществ

Растворение твердых веществ

Растворение твердых веществ в воде

Растворение твердых веществ, скорост

Растворение труднорастворимых веществ

Растворение. Определение растворимости веществ

Растворения твердых и кристаллических веществ скорость

Системы твердое вещество жидкость растворение

Скорость растворения. Растворимость твердых и жидки веществ

ТЕПЛОТЫ СГОРАНИЯ И РАСТВОРЕНИЯ. ТЕПЛОЕМКОСТЬ Теплота сгорания некоторых веществ в стандартных условиях

Температура абсолютная растворении нелетучего вещества

Теплота растворения некоторых веществ в воде , (экзо- и эндотермические реакции)

Термодинамика растворения высокомолекулярных веществ

Термодинамические аспекты процессов растворения твердых веществ

Фильтрационный массообмен с учетом конечной скорости растворения исходных веществ

Явления, наблюдаемые при растворении веществ в во. 6. Некоторые свойства растворов



© 2025 chem21.info Реклама на сайте