Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие виды импульсной полярографии

    ДРУГИЕ ВИДЫ ИМПУЛЬСНОЙ ПОЛЯРОГРАФИИ [c.97]

    Как и во всех вариантах полярографии, в импульсной полярографии имеется возможность использовать разностные методы, чтобы устранить ток заряжения. В гл. 4, посвященной усовершенствованию постояннотоковой полярографии, было показано, что метод с двумя ячейками и двумя идентичными электродами, в котором одна из ячеек содержит растворитель и электролит, а другая — испытуемый раствор, слишком сложен для обычной работы из-за трудности поддержания двух капилляров в идентичном состоянии то же самое справедливо и в импульсной полярографии. Однако доступна аппаратура [32], которая данные для фона хранит в памяти ЭВМ, и они вычитаются из данных для анализируемых растворов, причем оба измерения выполняются с одной ячейкой и капилляром. Такая аппаратура представляет собой практическое средство для получения высококачественных результатов. Недостатком является сложность оборудования, но, как будет показало в гл. 10, этот вид аппаратуры в будущем получит широкое распространение. [c.424]


    Многие биосенсоры работают при постоянном потенциале, что существенно упрощает приборное оформление. Однако при этом всегда наблюдается фоновый ток, величина которого может быть значимой при низких концентрациях определяемого вещества. Коррекция фонового тока и градуировка биосенсоров in vivo-две серьезные проблемы, которые требуют надежного решения. Колебания этих параметров могут быть обусловлены отравлением электрода компонентами среды. Ухудшается также чувствительность и время отклика биосенсора. Если флуктуации базовой линии обусловлены колебаниями концентраций эндогенных электроактивных мешающих частиц, то можно использовать двухэлектродную (дифференциальную) систему. Этот подход использовали при конструировании глюкозного датчика, где один электрод покрыт мембраной на основе глюкозооксидазы, а другой-мембраной, не содержащей фермента. Предполагается, что электроактивные примеси одинаковым образом диффундируют через обе мембраны [60]. В случаях, когда электрод загрязняется примесями из матрицы или продуктом электрохимической реакции, его подвергают многоимпульсной ступенчатой обработке при разных потенциалах [45, 52]. Этот способ позволяет одновременно провести как обработку электрода (в том числе удаление накопившихся на его поверхности пленок), так и установку базовой линии в области потенциалов, в которой отсутствует электролиз. Применяют также различные виды импульсной полярографии, вольтамперометрию (циклическую или с линейной разверткой потенциала). Последняя особенно полезна в двух случаях, описываемых ниже. Многие нейроактивные вещества окисляются при очень близких значениях потенциалов, и поэтому их трудно различить. Полная циклическая вольтамперограмма отражает различие в химических свойствах продуктов электролиза. Она может служить, с одной стороны, для качественного анализа, как отпечаток пальца исследуемой системы [56], а с другой-для количественного описания протекающих в ней электрохимических процессов. Недавно было показано [61], что представляющие интерес для биологии органические молекулы могут концентрироваться на обработанной поверхности электрода. При линейной развертке потенциала осадок определяемого вещества удаляется с поверхности, давая четко выраженный пик. [c.146]

    Многие ученые сопоставляли возможности импульсной полярографии и других вариантов полярографического анализа. Работы этого плана особо умножились после создания многофункциональных электрохимических анализаторов, например, приборов серии PAR фирмы Принстон Эплайд Рисерч Корпорейшн (США), которые позволяют регистрировать различные виды полярограмм. [c.18]


    Нормальная импульсная полярография отличается от классической полярографии и большинства других. видов полярографии тем, что за время регистрации полярограммы на восстановление или окисление определяемого деполяризатора расходуется значительно меньшее количество электричества Q. В неинверсионной нормальной импульсной полярографии подбирают такое значение Ео, чтобы определяемый деполяризатор не восстанавливался и не окислялся за время выдержки /в- Отношение в к продолжительности импульса напряжения т обычно велико. Например, при работе на импульсном полярографе А-3100, это отношение можно менять в пределах от 6,25 до 125. Поэтому, хотя за время т при наложении импульсов напряжения АЕ, смещающих потенциал электрода к по тенциалу предельного тока Е ред, через электролизер течет ток, в несколько раз превышающий предельный [c.71]

    Изучение современной литературы фактически по всем полярографическим методам показывает, что использование лабораторной ЭВМ в полярографическом анализе становится обычным. Достижения в электрохимическом приборостроении в настоящее время близко отвечают уровню развития элементов электроники. Многие функции приборов, которые прежде осуществлялись в аналоговом виде, теперь все чаще обеспечиваются цифровыми устройствами. Очевидно, самым значительным достижением является разработка микропроцессоров на интегральных схемах, которые встраиваются в аппаратуру, выпускаемую промышленностью. В сочетании с недорогими интегральными схемами памяти и цифроаналоговыми (ЦАП) и аналогоцифровыми (АЦП) преобразователями микропроцессор позволяет создавать недорогие приборы, которые обеспечивают замкнутый цикл контроля, накопления и обработки информации. Это означает, что все операции эксперимента (например, установка скорости развертки напряжения, периода капания, высоты импульса, лриращения потенциала, измерение тока или высоты пика и вычисление концентрации) выполняются под управлением ЭВМ и без вмешательства оператора. Например, в полярографии используют прибор, в котором микропроцессор управляет аналоговым потенциостатом для осуществления дифференциальной импульсной полярографии, анодной инверсионной вольтамперометрии и ряда других методов. Такие процедуры, как отбрасывание данных, полученных от плохих капель, усреднение результатов повторных измерений, вычисление высоты, пика и его положения, вычитание фона и изменение масштабов г— -кривой также выполняются под управлением микропроцессора. Некоторые особенности этих приемов показаны на рис. 10.1—10.3. [c.545]

    Полярография служит удобным методом анализа и установления структуры органических соединений, в принципе не отличающимся от обсужденных выше. Продукты электрохимической реакции с участием органических соединений нерастворимы в ртути, но почти всегда растворяются в том же растворителе, что и исходное вещество. Для полярографии в принципе подходит любой растворитель, в котором растворим электролит,— различные спирты или кетоны (в чистом виде или в смеси с водой), диметилформамид,- ацетонитрил, этилендиа-мин и другие. В качестве фоновых электролитов пригодны различные соли четвертичного аммония (например, иодид тет-рабутиламмония), легко растворимые в органических растворителях. В качестве примера на рис. 16-17 приведена дифференциальная импульсная полярограмма 2-этилантрахинона на фоне ЫС1 в 50 %-ном растворе этанола. [c.357]


Смотреть главы в:

Импульсная полярография -> Другие виды импульсной полярографии




ПОИСК





Смотрите так же термины и статьи:

Импульсный полярограф

Полярограф

Полярография

Полярография импульсная



© 2025 chem21.info Реклама на сайте