Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макроскопическое изучение электрофореза

    МАКРОСКОПИЧЕСКОЕ ИЗУЧЕНИЕ ЭЛЕКТРОФОРЕЗА [c.130]

    Макроскопическое изучение электрофореза [c.131]

    Макроскопическое изучение электрофореза 133 [c.133]

    Макроскопическое изучение электрофореза 135 [c.135]

    В конце 30-х годов в области электрофореза наметилось новое направление, сыгравшее большую роль в изучении физикохимических свойств некоторых коллоидных систем и очень быстро развивающееся в настоящее время. Это направление связано с усовершенствованиями макроскопического метода электрофореза, сделанными Тизелиусом, Мак-Иннесом, Лонгсвордом и другими исследователями для применения электрофореза к анализу сложных белковых систем. Усовершенствования включали четыре основных момента 1) получение четкой границы между золем и боковой жидкостью, 2) подавление теплового эффекта в опыте, 3) выделение отдельных фракций белков в чистом виде, 4) применение метода Фуко—Тендера для определения границы движущихся в электрическом поле отдельных фракций белка по показателю преломления света. [c.132]


    Макроскопические методы. Хотя микроскопический метод имеет некоторые преимущества в отношении простоты количества необходимого для измерени51 времени и в отношении получения сведений о форме, величине и ориентации частиц, за последние годы большое внимание привлекает макроскопический метод главным образом потому, что Тизелиус разработал очень удобный прибор для измерения. Макроскопический метод применялся в течение многих лет для приближенного изучения электрофореза простейшая форма прибора изображена на рис. 126. Нижняя часть U-образной трубки содержит исследуемую суспензию или коллоидный раствор, над которым в обоих коленах сосуда налит слой чистого растворителя и в него погружены два платиновых электрода. При наложении на эти электроды некоторого напряжения граница между растворителем и суспензией начинает передвигаться со скоростью, равной скорости электрофореза частиц. Если суспензия окрашена, можно непосредственно наблюдать за положением границы и измерять скорость ее движения. Зная градиент потенциала, можно вычислить среднюю электрофоретическую подвижность частиц. Если граница не поддается визуальному наблюдению, то иногда можно сделать ее видимой, заставив ее флуоресцировать в ультрафиолетовом свете в этом случае прибор должен быть изготовлен из кварца [20]. [c.713]

    Основные недостатки макроскопического метода устранены в приборе, предложенном Тизелиусом. Его важнейшим преимуществом является применение во всем приборе одной и той же жидкo тIi, обычно буферного раствора, так что при движении границы частицы продолжают оставаться в том же растворе. Кроме того, употребляются трубки с прямоугольным сечением, а раствор поддерживается при температуре около 3°, соответствующей максимальной плотности буферного раствора. При прохождении электрического тока через жидкость, находящуюся в трубке, выделяется тепло, причем благодаря теплопроводности жидкость вблизи стенок трубки теряет больше тепла, чем в середине. В результате раствор в середине трубки приобретает более высокую температуру, чем у стенок, и различие плотностей приводит при комнатной температуре к появлению токов конвекции, которые нарушают отчетливость границы между растворами. Трубки с прямоугольным поперечным сечением имеют большую площадь стенок, чем цилиндрические, что облегчает отвод тепла в окружающую среду. Поддержание в растворе температуры несколько ниже 4°, при которой плотность жидкости очень мало меняется с изменением температуры, приводит к значительному уменьшению конвекции. С этими усовершенствованиями и с приспособлением для получения в начале опыта резкой границы макроскопический метод представляет собой ценное средство для изучения электрофореза и для его применения с целью разделения частиц, движущихся с различной скоростью. [c.714]


    Методы изучения электрофорезав золях делятся на 1) макроскопические, основанные на наблюдении передвижения либо вещества дисперсной фазы (только в качественных наблюдениях), либо границы коллоидного раствора с дополнительной боковой жидкостью, и 2) микроскопические, основанные на непосредственном наблюдении за движущимися частицами в ультрамикроскоп или простой микроскоп. [c.112]

    Методы изучения макроскопического переноса веществ вужиДкой среде под действием некоторой внешней силы имеют много общего, что породило выделение их в отдельную область транспортных явлений (transport phenomena) [5, 6]. В физической химии полимеров к транспортным методам относят ультрацентрифугирование, диффузию, электрофорез и хроматографическое разделение макромолекул в растворах. Транспортные методы основаны на неравновесных процессах массопереноса различной природы. Общее во всех этих методах — направленное движение макромолекул относительно гомогенной или гетерогенной окружающей среды под действием некоторой силы. Разновидности последней обеспечивают разнообразие транспортных методов. В случае седиментации и электрофореза — это силы внешних гравитационного и электрического (для заряженных макромолекул) полей, в случае диффузии — это осмотическое давление, т. е. градиент химического потенциала, возникающий одновременно с возникновением градиента концентрации, в случае хроматографии — обусловленное динамической сорбцией межфазное распределение, уменьшающее среднюю скорость движения макромолекул по сравнению с молекулами растворителя — носителя . [c.7]


Смотреть главы в:

Руководство к практическим занятиям по коллоидной химии Издание 3 -> Макроскопическое изучение электрофореза

Руководство к практическим занятиям по коллоидной химии Издание 4 -> Макроскопическое изучение электрофореза




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте