Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы макроскопического переноса вещества и энергии

    До сих пор мы рассматривали только статические методы определения формы и размеров макромолекул. Динамические методы, охарактеризованные в общих чертах в гл. VI, основаны на изучении диффузии. (Исключение составляют методы, в которых используются данные вискозиметрии.) Диффузией называют процесс спонтанного уменьшения градиентов концентраций в растворе, приводящий в конце концов к равномерному распределению молекул. Молекулы жидкости находятся в непрерывном броуновском движении, обусловленном их тепловой энергией. Поэтому подчеркнем, что термин диффузия применяется именно для описания макроскопического потока отдельных компонентов раствора под влиянием разности концентраций, а не для описания движения отдельных молекул в растворе, продолжающегося и после достижения макроскопической однородности. Знакомство с законами, которым подчиняется диффузия, совершенно необходимо для понимания процессов переноса веществ внутри клеток и через клеточные мембраны. Мы начнем с рассмотрения поступательной диффузии, затем перейдем к вращательной диффузии и времени релаксации. [c.163]


    Состояние химических систем (как и любых других систем) может изменяться. Такие изменения называются процессами. Понятие процесса является одним из наиболее фундаментальных понятий для физической химии. Следует подчеркнуть, что строение и свойства химических систем проявляются именно в изменениях состояний систем. С химической точки зрения особый интерес представляют такие процессы, в которых происходит глубокая перестройка электронных состояний, сопровождаемая перегруппировкой ядер, так что из одних устойчивых одно- или многоатомных частиц образуются другие. В многокомпонентной макроскопической системе эти процессы приводят к химическому превраш,ению, в результате которого некоторые химические соединения — исходные веш,ества, или реагенты, превращаются в другие химические соединения — продукты. Химическую природу имеют также и многие другие явления, происходящие в химической системе, такие, как растворение, испарение ковалентных и ионных кристаллов и др., так как они также сопровождаются существенной перестройкой электронных оболочек. Как правило, химические превращения сопровождаются процессами, которые принято относить к области молекулярной физики переносом вещества и зарядов, переносом энергии термического возбуждения (теплоты) и др. [c.186]

    Основная задача химико-технологического процесса состоит в направленном (заданном) изменении макроскопических свойств участвующих в этом процессе веществ состава, агрегатного состояния, температуры, давления. Для этого на систему воздействуют подачей или отводом теплоты, внешними силовыми полями (гравитационными, центробежными и др.), перемещением под действием силы давления и т.п., что приводит к переносу субстанции-энергии, массы, импульса. Предельным состоянием системы является подвижное равновесие, которое не приводит к изменению макроскопических свойств участвующих в процессе веществ во времени и пространстве. Таким образом, равновесным называют такое состояние системы, при котором перенос субстанций отсутствует. [c.25]

    Феноменологические соотношения, определенные в подразделе 1.1, играют важную роль в термодинамике необратимых процессов. Общую основу макроскопического описания необратимых процессов составляет неравновесная термодинамика, которая строится как теория сплошной среды и параметры которой, в отличие от равновесной термодинамики, являются функциями пространственных координат и времени. Центральное место в неравновесной термодинамике играет уравнение баланса энтропии [10]. Это уравнение выражает тот факт, что энтропия некоторого элемента объема сплошной среды изменяется со временем за счет потока энтропии в рассматриваемый объем извне и за счет положительного источника энтропии, обусловленного необходимыми процессами внутри объема. При обратимых процессах источники энтропии отсутствуют. В этом состоит локальная формулировка второго закона термодинамики. Поэтому основной задачей в теории необратимых процессов является получение выражения для источника энтропии. Для этого необходимо использовать законы сохранения массы, количества движения и энергии в дифференциальной форме, полученные в разделе 1. В уравнения сохранения входят потоки диффузии, тепла и тензор напряжений, которые характеризуют перенос массы, энергии и импульса. Важную роль играет термодинамическое уравнение Гиббса (5.49), которое связывает скорость изменения энтропии со скоростями изменения энергии и состава смеси. Оказывается, что выражение для интенсивности источника энтропии представляет собой сумму членов, каждый из которых является произведением потока, характеризующего необратимый процесс, и величины, называемой термодинамической силой. Термодинамическая сила связана с неоднородностью системы или с отклонением параметра от его равновесного значения. Потоки, в свою очередь, в первом приближении линейно зависят от термодинамических сил в соответствии с феноменологическими соотношениями. Эти линейные законы отражают зависимость потока от всех термодинамических сил, т. е. учитывают перекрестные эффекты. Так, поток вещества зависит не только от градиента концентрации, но и от градиентов давления, температуры, электрического потенциала и т. д. Неравновесная термодинамика ограничивается в основном изучением линейных феноменологических соотношений. [c.83]


    Макрокинетика изучает взаимодействия в химическом процессе на уровне агрегатов молекул, в масштабах вихрей, капель или газовых пузырей, т. е. в масштабах макрочастиц. Основной задачей макрокинетики является установление законов переноса вещества и энергии на макроскопическом уровне в реальных условиях проведения химических процессов. Эта задача сводится к установлению распределения концентраций и температур в реакторе в зависимости от организации потоков реагентов, подвода (отвода) тепла, влияния диффузии. [c.57]

    На этой основе представление об участии активированных комплексов в процессе реакционной диффузии позволяет объяснить случаи аномально низких значений кажущейся энергии активации. В то же время это представление дает объяснение аномалиям заторможенности роста толщины одного из слоев многофазной окалины при продолжающемся росте окалины в целом. Можно полагать, что такой слой в начальной стадии процесса растет с большей скоростью, обусловленной участием активированных комплексов, пока не достигается определенная толщина, на протяжении которой движущиеся комплексы полностью распадаются на автономные точечные дефекты. После этого дальнейший процесс лимитируется диффузией последних. Резкое замедление роста слоя при этом обусловлено существенно меньшей скоростью переноса вещества отдельными точечными дефектами сравнительно с активированными комплексами. Медленное наращивание слоя на одной из его сторон успевает практически полностью расходоваться на реакцию перестройки в ближайшую по составу фазу, т. е. на наращивание соседнего слоя. Следует отметить, что наблюдаемая обычно в таких случаях предельная толщина имеет вполне макроскопический характер и явление не может сводиться к эффектам атомно-микроскопического порядка, формирующим тончайшие окисные пленки типа пленок пассивности, запорных слоев и т. п. [c.10]

    Для химического превращения значительных масс вещества, т. е. множества молекул, являются необходимыми столкновение молекул и обмен энергиями между ними (перенос энергии движения молекул продуктов реакции к молекулам исходных веществ путем столкновений). Таким образом реальный химический процесс тесно связан и со второй физической формой движения — хаотическим движением молекул макроскопических тел, которое часто называют тепловым движением. [c.18]

    Имеется еще один тип переноса тепла в жидкостях и газах. В такой среде могут возникнуть макроскопические движения, и тепло может передаваться от одной точки к другой вместе с массами вещества. Этот процесс называется конвективным теплообменом. Третий способ теплообмена — лучистый теплообмен. Твердые тела, так же как жидкости и газы, способны излучать и поглощать тепловую энергию в виде электромагнитных волн. В производственных процессах часто все три вида теплообмена участвуют одновременно. [c.25]

    Два последних десятилетия характеризовались стремительным развитием н совершенствованием средств вычислительной техники, методов вычислительной математики, а также всего комплекса научных идей, который обычно понимается под термином математическое моделирование . Использование метода математического моделирования для расчета процессов и аппаратов химической технологии позволяет значительно сократить путь от принципиальной разработки процесса до его аппаратурного оформления и внедрения в промышленную практику. Математические модели всех процессов основаны на использовании тех или иных форм уравнений макроскопического переноса вещества и энергии, и успех математического моделирования в большой мере определяется адекватностью и надежностью основных уравнений переноса. До последнего времени в качестве основных уравнений массоэнергопереноса использовались линейные уравнения типа уравнений диффузии и теплопроводности, хотя известно, что область их применения ограничена умеренными значениями потоков и градиентов. Удовлетворительная точность расчета конкретных процессов, достигавшаяся при использовании линейных форм уравнений переноса, объясняется тем, что в большинстве случаев целью расчета являлось определение параметров стационарных режимов массоэнергопереноса. Возросший интерес к нестационарным режимам массоэнергопереноса, а также расширение номенклатуры материалов, с которыми имеет дело химическая технология, привели к обнаружению целого ряда нелинейных эффектов при массо-энергопереносе, которые не могут быть истолкованы в терминах линейной теории. [c.7]

    Перенос массы, энергии и импульса. Процессы переноса массы, энергии и импульса необратимы и приводят к возрастанию энтропии. Если эти процессы протекают в газах при определенных условиях, то их можно описать количественно. Перенос молекул в отсутствие макроскопического потока газа называется диффузией. Поток вещества, обусловленный диффузией, пропорционален градиенту концентрации. Таким образом, плотность потока -го компонента газовой смеси в направлении 2 (выраженная в молъ-см -сек ) при наличии градиента концентрации л / [c.309]


    Для наглядного представления механизма переноса энергии в объеме излучающего газа часто бывает удобно рассматривать излучение как поток частиц — фотонов, движущихся по прямолинейным траекториям со скоростью света с и обладающих разной энергией hv. Часть фотонов захватывается молекулами газа, что приводит к иовыщенню энергии газа, т. е. его нагреванию. При этом молекулы газа захватывают лишь те фотоны, частоты которых отвечают полосам поглощения в спектре газа. Фотоны других частот (энергий) пролетают газовый объем без взаимодействия с веществом. Так осуществляется процесс поглощения лучистой энергии в объеме газа. Одновременно с процессом поглощения энергии происходит обратный процесс — излучения энергии объемом газа. Вследствие хаотического теплового движения газовых молекул, их вращения, колебаний атомов отдельные многоатомные молекулы газа получают избыток энергии по сравнению со средним его уровнем. Избыток энергии может затем самопроизвольно излучаться в форме рождающихся фотонов в окружающее пространство. Этот механизм определяет собственное излучение газового объема. В связи с тем что в любом макроскопически малом объеме газа его состояние обычно весьма близко к термодинамически равнозесному состоянию, каждый элементарный объем газа излучает фотоны по всем направлениям пространства с примерно одинаковой интенсивностью. Иначе говоря, пространственное распределение собственного излучения элемента газового объема имеет обычно-характер, близкий к изотропному. [c.199]

    Вместе с тем протекание реакции зависит, как правило, не только от термодинамических свойств реагирующей системы. Прежде чем перейти в равновесное состояние, определяемое термодинамикой реакции, система проходит через ряд промежуточных состояний. Скорость прохождения системой этих стадий определяется кинетикой процесса скорость установления равновесного распределения энергии по степеням свободы — физической кинетикой, скорость установления равновесного химического состава — химической кинетикой. При этом спецификой плазмохимических реакций является сильное взаимное влияние факторов физической и химической кинетики. Конечная скорость установления равновесного распределения энергии по различным степеням свободы в ряде случаев ограничивает возможность применения классических методов химической кинетики, основанных на предположении о максвелл-больцмановском распределении эиергии в реагирующей системе. Но и в тех случаях, когда методы химической кинетики могут считаться применимыми, исследование химической кинетики системы затрудняется тем, что сравнительно высокие при рассматриваемых температурах скорости химических реакций могут весьма существенно зависеть от скорости физических процессов, таких как диффузия — молекулярный и турбулентный перенос, макроскопическое перемешивание компонентов реагирующей системы. Изучение плазмохимического процесса предполагает, в общем случае, исследование элементарных актов соударений при условии кТ Е термодинамики, физической и химической кинетики процесса, а также вопросов газодинамики перемешивающихся потоков реагирующих веществ с учетом взаимоосложняющих воздействий всех этих факторов друг на друга. Сложность такой постановки задачи очевидна. Поэтому правомерно принять некоторое физически осмысленное упрощение отдельных сторон вопроса, разграничение отдельных факторов и их взаимных влияний. [c.412]

    Развитие современной термодинамики началось с формулировки ряда постулатов, которые не могут быть строго обоснованы в рамках макроскопических представлений и не являются столь же широкими обобщениями, как первые три начала термодинамики. Можно тем не менее утверждать, что выдвинутые положения, которые рассматриваются ниже, справедливы по крайней мере в случае малых отклонений от равновесия. Вместе с известными началами классической термодинамики новые положения, прюдставляющие собой обобщения соответствующих экспериментальных данных, составили теоретическую основу линейной термодинамики неравновесных процессов. В отличие от равновесных статистических ансамблей характеристики неравновесных макроскопических систем изменяются со временем, а термодинамические параметры имеют разные значения в различных точках системы, т.е. зависят от координат. Существование в системе разности величин какого-либо интенсивного параметра (температуры, давления, концентрации) ведет к возникновению потока некоторого экстенсивного параметра (в конечном счете, вещества и энергии). Скорость переноса экстенсивной величины вследствие выравнивания интенсивного фактора в реальных условиях не будет бесконечно малой, как в случае равновесного, обратимого процесса. К типичным примерам неравновесной системы такого рода можно отнести поток газа при наличии градиента плотности поток жидкости, вызванный разностью гидростатических давлений поток тепла (теплообмен) под действием градиента температуры, поток заряженных частиц в электрическом и магнитном полях и т.д. [c.443]

    Конечный результат и характер химических превращений, происходящих при температурах порядка нескольких тысяч градусов, в значительной степени определяются гермодинамическими свойствами веществ, участвующих в той или иной из ее стадий. Но прежде чем перейти в равновесное состояние определяемое термодинамикой, система проходит через ряд промежуточных состояний, скорость прохолодения которых описывается кинетикой процесса физической — для установления равновесного распределения энергии по степеням свободы и химической — для установления равновесного химического состава. Плазмохимические реакции в общем случае характеризуются сильным взаимным влиянием факторов физической и химической кинетики, и скорости их могут сильно зависеть от скоростей таких физических процессов, как молекулярная диффузия, турбулентный перенос, а также макроскопическое перемешивание реагентов. [c.223]


Смотреть главы в:

Моделирование процессов массо- и энергопереноса -> Процессы макроскопического переноса вещества и энергии




ПОИСК





Смотрите так же термины и статьи:

Вещества энергия

Процесс энергии

Процессы переноса энергии



© 2025 chem21.info Реклама на сайте