Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сравнительная устойчивость соединений галогенов

    Сравнительная устойчивость соединений галогенов [c.168]

    Все элементы подгруппы азота обладают высшим валентным состоянием 54-, соответствующим соединениям их с более электроотрицательными элементами — кислородом, серой, фтором, хлором и бромом. Они образуют с ними также сравнительно устойчивые соединения, где имеют валентность 3+, отвечающую ионам с внешней s -оболочкой, В гидридах они трехвалентны. С возрастанием атомного номера прочность трехвалентных соединений с электроотрицательными элементами — кислородом, серой и галогенами — растет, а пятивалентных — уменьшается. Прочность трехвалентных соединений с электроположительным водородом при этом снижается. Азот и некоторые его аналоги проявляют также положительные валентности 1+, 2-Н и 4-Ь, которые, однако, для них менее характерны. Таким образом, высшая положительная валентность 5-Ь и высшая отрицательная валентность 3—, свойственные всем этим элементам, однозначно указывают на принадлежность их к V группе. [c.80]


    Опыт 270. Сравнительная устойчивость кислородных соединений галогенов. [c.186]

    Тем не менее, циклобутан не обнаруживает столь разнообразных свойств, как циклопропан За исключением сравнительно легко протекающего гидрогенолиза, он не проявляет свойств непредельного соединения це присоединяет галогенов с образованием 1,4-дигалогенидов, не дает адцуктов с солями оксида ртути, как алкены и циклопропаны, является устойчивым к действию галогеноводородных кислот, не проявляет достаточно четко выраженной способности к сопряжению с непредельными группировками, не обладает способностью к комплексообразованию [c.29]

    Равно как уменьшается устойчивость производных с высшими степенями окисления в главных подгруппах от легких элемеитов к тяжелым, точно так же высшие оксиды тяжелых элементов тоже оказываются сравнительно непрочными и легко отдают избыток (по сравнению с низшими оксидами) кислорода. Поэтому как все кислородные соединения галогенов,, так и высшие оксиды самых тяжелых элемеитов главлых подгрупп оказываются сильными окислителями. [c.185]

    Со всеми галогенами олово и свинец взаимодействуют с образованием тетрага.иидов. Но тетрабромид,и тетраиодид свинца неустойчивы, поэтому при действии брома и иода на свинец получаются дибромид и дииодид. Реакции начинаются уже на холоду и идут энергично при сравнительно небольшом нагревании. На воздухе при обычной температуре олово вполне устойчиво, свинец же постепенно покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. При пягревапии подвергается окислению и олово. Олово и свинец легко взаимодействуют с серой, образуя соответствующие сульфиды с селеном и теллуром они взаимодействуют при нагревании, с азотом непосредственно не соединяются с большинством металлов образуют сплавы, содержащие, как правило, иитерметаллические соединения. [c.341]

    Водород в соединениях с неметаллами поляризован положительно. Поскольку он сам является неметаллом, эти соединения сравнительно малонолярны. Даже соединения с галогенами, например НО, представляют собой почти идеально ковалентную молекулу . Если допустить образование положительного иона водорода при взаимодействии с сильно электроотрицательными элементами (что мало вероятно из-за большого потенциала ионизации), образующиеся соединения должны быть малополярными в результате исключительно высокого поляризующего действия Н +. Таким образом, соединения водорода со степенью окисления +1 — малополярные ковалентные вещества. Они летучи по той простой причине, что между ковалентными молекулами действуют слабые ван-дер-ваальсовы силы или водородная связь. Прочность межатомных связей и термическая устойчивость летучих гидридов зависят в первую очередь от [c.102]


    Существенной особенностью химии кремния сравнительно с химией углерода является возможность вовлечения в связеобразова-ние 3d-орбиталей. Это приводит к увеличению валентных возможностей атома кремния. Теоретически максимальная ковалентность кремния может быть равна 9 против 4 у углерода. На практике, помимо валентности 4, встречаются шести ковалентные производные, в которых атом кремния находится в sp ii -гибридном состоянии. Однако для кремния наиболее характерны структуры, где атомы кремния имеют к. ч. 4 и находятся в 5 о= -гибридном состоянии. Производные с sp- и sp -гибридизацией атома кремния редки и, как правило, мало устойчивы. Кремний в отличие от углерода менег склонен образовывать кратные связи. Для кремния наиболее характерно дополнительное Лр -связывание в отличие от Пр.р-взаимодействия для углерода. Таким образом, в случае кремния л-связывание часто возникает за счет участия вакантных 3ii-op6H-талей и неподеленных электронных пар атомов партнеров. Так обстоит дело в соединениях кремния с азотом, кислородом, фтором и хлором. Прочность связей кремния с кислородом, азотом и галогенами из-за дополнительного л-связывания выше, чем соответствующих связей для углерода. Наоборот, связь атома углерода, например, с водородом прочнее, чем у кремния, так как водород не располагает неподеленной электронной парой. Ниже для сравнения [c.198]

    Водород в соединениях с неметаллами поляризован положительно. Поскольку он сам является неметаллом, эти соединения сравнительно малополярны. Даже соединения с галогенами, например НС1, представляют собой почти идеально ковалентную молекулу. Если допустить образование положительного иона водорода при взаимодействии с сильно электроотрицательными элементами (что маловероятно из-за большого потенциала ионизации), образующиеся соединения должны быть малополярными в результате исключительно высокого по [яризу-ющего действия Н. Таким образом, соединения водорода со степенью окисления +1 — малополярные ковалентные вещества. Они летучи по той простой причине, что между молекулами действуют слабые ван-дер-ваальсовы силы или водородная связь. Прочность межатомных связей и термическая устойчивость летучих гидридов зависят в первую очередь от ОЭО и размера атома второго элемента, с которым связан водород. Как видно из рис. 133, внутри группы прочность связей Н—Э уменьшается сверху вниз. В этом же направлении возрастает атомный размер второго элемента и уменьшается его ОЭО. Оба фактора действуют в направлении уменьшения прочности связи Н—Э. За небольшими исключениями внутри периода с ростом порядкового номера Э прочность связи Н—Э возрастает из-за увеличения ОЭО и уменьшения размера Э. Если же взять два элемента с одинаковой ОЭО, более тяжелый образует менее устойчивый летучий гидрид. Так, например, устойчивость метана выше, чем сероводорода, хотя углерод и сера характеризуются одинако- Рис. 133. Энергия связи в летучих водо-ВОЙ ОЭО. родных соединениях [c.297]

    Фториды и хлориды щелочных металллов. значительно более устойчивы по сравнению с их окислами. В Справочнике не рассматриваются полимерные молекулы соединений щелочных металлов с галогенами типа (МХ) содержание этих молекул в парах, особенно при высоких температурах, сравнительно мало, и пренебрежение ими практически не сказывается на термодинамических расчетах соответствующих систем. Фториды и хлориды рубидия и цезия в Справочнике не рассматриваются. [c.891]


Смотреть страницы где упоминается термин Сравнительная устойчивость соединений галогенов: [c.167]    [c.370]    [c.91]    [c.296]   
Смотреть главы в:

Лекционные опыты по общей химии -> Сравнительная устойчивость соединений галогенов




ПОИСК





Смотрите так же термины и статьи:

Устойчивость соединений

сравнительная



© 2025 chem21.info Реклама на сайте