Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление металлов при диффузионном контроле

    Все эти напряжения могут вызывать механическое разрушение защитных пленок на металлах с соответствующим ухудшением или полной потерей их защитных свойств. Это вносит значительные осложнения в простейшие законы окисления металлов (рис. 47) и часто приводит к замене диффузионного контроля процесса окисления металла диффузионно-кинетическим или кинетическим контролем, т. е. к переходу от окисления металла по [c.76]


    Эти напряжения могут вызвать механическое разрушение защитных пленок на металлах с соответствующим ухудшением или полной потерей их защитных свойств. Это вносит, значительные осложнения в простейшие законы окисления металлов (рис. 13) и часто приводит к замене диффузионного контроля процесса окисления металла диффузионно-кинетическим или кинетическим контролем, т. е. к переходу от окисления металла по параболическому закону (20) к окислению по закону квадратного уравнения (251) или линейному закону (12). Таким образом, при эксплуатации металлических изделий и конструкций при высоких температурах большое практическое значение имеет сохранность защитной пленки. [c.40]

    При смешанном диффузионно-кинетическом контроле процесса окисления металла в уравнении (88) с Ф 0. Для установившегося процесса скорость химической реакции и скорость диффузии равны учитывая уравнения (71) и (88), можно написать [c.63]

    Растрескивание при сдвиге (рис. 49, д) характерно для пленок, обладающих большой адгезией к металлу и сравнительно малой прочностью. Этот вид разрушения, не ведущий к удалению пленки на большом участке поверхности, обычно не вызывает резкого увеличения скорости окисления металла, но способствует переходу от чисто диффузионного контроля процесса (параболический закон роста окисной пленки) к диффузионно-кинетическому контролю (сложно-параболический закон роста пленки). [c.79]

    Независимо от электрохимической природы металлов, наличие окисных пленок на их поверхности (например, на титане, никеле, олове) или диффузионного контроля коррозионного процесса (например, у олова) значительно понижает восприимчивость металлов к действию ингибиторов коррозии, так как ингибиторы практически не адсорбируются на окисленной поверхности металлов, а также не влияют на скорость диффузионных процессов. [c.349]

    Рассмотрим условия роста пленки при кинетическом и диффузионном контроле. На рис. 3 представлены два возможных случая процесса окисления. Непосредственное взаимодействие кислорода с поверхностью металла [c.16]

    Окисление металлов при диффузионном контроле [c.274]

    Опыт показывает, что рост окисных пленок на металлах при невысоких температурах (окисление меди в интервале температуры 200—500° С, железа и сталей в интервале температуры 400—700° С и др.) может быть вырал<ен степенным уравнением (26), но с показателем я>2, что соответствует переходу контроля окисления металлов переносом в тонких пленках в контроль диффузионный. В ряде слу- [c.35]


    Температура очень сильно влияет на скорость процессов химической коррозии металлов. С повышением температуры процессы окисления металлов протекают значительно быстрее, несмотря на уменьшение их термодинамической возможности. Характер влияния температуры на скорость окисления металлов определяется температурной зависимостью константы скорости химической реакции кс (при кинетическом контроле процесса окисления металлов) нли коэффициента диффузии йд (при диффузионном контроле процесса), которая выражается одним и тем же экспоненциальным законом (уравнение Аррениуса), связывающим температуру с относительной долей частиц, обладающих энергией выше некоторого порогового значения (рис. 82, а)  [c.122]

Рис. IV,10, IV,И и IV,13—IV,19 показывают, что на поляризационной кривой восстановления кислорода, даже если бы процесс не осложнялся окислением металла (например, кривые vl к на рис. IV,10), имеется область чисто электрохимической кинетики. В этой области скорость восстановления кислорода столь мала, что аог У поверхности электрода близка к ао в глубине раствора, и кинетика определяется протеканием самой электродной реакции. Имеется область диффузионной кинетики, где скорость процесса определяется транспортом кислорода к поверхности электрода (при fflOj = О скорость диффузии максимальна). Имеется и область смешанной кинетики, когда скорость реакции и скорость диффузии не слишком сильно отличаются друг от друга. Рассмотрим подробнее случай смешанной кинетики или, как это часто называется в коррозионной литературе, область смешанного диффузионного и электрохимического контроля. Рис. IV,10, IV,И и IV,13—IV,19 показывают, что на <a href="/info/638349">поляризационной кривой восстановления</a> кислорода, даже если бы процесс не осложнялся <a href="/info/18878">окислением металла</a> (например, кривые vl к на рис. IV,10), имеется область чисто <a href="/info/15225">электрохимической кинетики</a>. В этой области <a href="/info/1772604">скорость восстановления кислорода</a> столь мала, что аог У <a href="/info/10623">поверхности электрода</a> близка к ао в глубине раствора, и <a href="/info/445307">кинетика определяется</a> протеканием самой <a href="/info/71293">электродной реакции</a>. Имеется <a href="/info/1805593">область диффузионной кинетики</a>, где <a href="/info/1609343">скорость процесса определяется транспортом</a> кислорода к <a href="/info/10623">поверхности электрода</a> (при fflOj = О <a href="/info/24177">скорость диффузии</a> максимальна). Имеется и <a href="/info/941956">область смешанной</a> кинетики, когда <a href="/info/2823">скорость реакции</a> и <a href="/info/24177">скорость диффузии</a> не слишком сильно <a href="/info/1093712">отличаются друг</a> от друга. Рассмотрим подробнее <a href="/info/1701022">случай смешанной</a> кинетики или, как это часто называется в <a href="/info/1623681">коррозионной литературе</a>, <a href="/info/941956">область смешанного</a> диффузионного и электрохимического контроля.
    Характер влияния температуры на скорость окисления металлов определяется температурной зависи-хмостью константы скорости химической реакции (при кинетическом контроле процесса окисления металлов) или коэффициента диффузии (при диффузионном контроле процесса), которая выражается одним и тем же экспоненциальным законом. Таким образом, повышение температуры должно влиять на скорость окисления металлов по аналогичному экспоненпиальному закону. [c.46]

    В. А. Ловачев [4, с. 86] осциллографически и хроиоам-перометрически изучали окисление металлического серебра и никеля в щелочных растворах. Установлено, что в определенной области потенциалов протекает с диффузионным контролем в твердой фазе и что анодные пики соответствуют различным степеням окисления металлов или изменению полупроводниковых свойств окисного слоя, а не последовательному образованию монослоев одного и того же окисла. Этот вывод весьма интересен, так как позволяет судить о перспективности анодных полярографических методов для изучения кинетики и механизма процессов окисления металлов. [c.55]


Смотреть страницы где упоминается термин Окисление металлов при диффузионном контроле: [c.43]   
Смотреть главы в:

Физическая химия твердого тела -> Окисление металлов при диффузионном контроле




ПОИСК





Смотрите так же термины и статьи:

Металлы окисление



© 2025 chem21.info Реклама на сайте