Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние давления на скорость окисления металлов

    Существенное влияние на скорость газовой коррозии оказывают образующиеся продукты коррозии, их физико-химические н механические свойства. В больщинстве случаев коррозия протекает в окислительной среде при этом на поверхности металла в качестве продукта коррозии образуется окисная пленка. Впрочем, тонкая окисная пленка на металле обычно появляется уже при комнатной температуре. Свойства образующейся окисной пленки решающим образом влияют на дальнейший ход коррозионного процесса. В случае резкого торможения процесса вплоть до, полного прекращения коррозии говорят о наступившей пассивности поверхности металла Термодинамика газовой коррозии. Термодинамическая возможность процесса газовой коррозии с образованием окисной пленки определяется величиной изменения свободной энергии системы. Существует удобная форма определения термодинамической возможности протекания коррозии за счет окисления металла, которая сводится к сравнению упругости диссоциации полученного продукта реакции окисления с парциальным давлением кислорода в газовой фазе. [c.46]


    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Вопрос о влиянии на скорость окисления металлов кислорода при высо ком давлении, достигающем 40 атм, изучен только для отдельных металлов, а именно для ниобия [241], тантала [201], молибдена [203], вольфрама [243], кобальта [257] и меди [247, 248]. В большинстве случаев механизм окисления этих металлов довольно сложен, так что объяснить влияние давления полностью пока не удается. [c.79]

    Опытные данные о влиянии скорости движения газовой среды на скорость окисления металлов (рис. 38, 39 и 96), согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре, указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы /7-типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина — газ, т. е. внешней массопередачей (см. с. 65). Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя. [c.135]

    На скорость окисления металлов большое влияние оказывает парциальное давление кислорода. [c.29]

    Скорость окисления металла или сплава зависит от газовой среды, в которой протекает реакция. О влиянии различных газов или газовых смесей на скорость окисления будет говориться ниже, а вопрос о влиянии давления газов рассматривался ранее. [c.215]

    Окисление меди и ее влияние на окисление водорода послужило предметом ряда исследований. Медь легко окисляется с образованием поверхностного окисла, который при температурах до 175° по составу соответствует закиси меди, а при более высоких температурах основной его составной частью является окись меди. Реакция протекает наиболее быстро на границе раздела металл —окись. Скорость окисления повышается в присутствии водорода и достигает максимума при соотношении Н2 02= 1 1. Сравнение скоростей окисления меди со скоростями восстановления образующихся окислов при тех же самых парциальных давлениях показывает, что они сопоставимы, если температура реакции превышает 175°, т. е. что этот катализ представляет типичную реакцию, идущую через стадию образования промежуточного соединения с попеременным окислением и восстановлением металла. При температурах ниже 175° расходуется больше кислорода, чем необходимо для образования воды, и из экспериментальных данных следует. [c.124]

    Хотя подобные вопросы, связанные с упругостью диссоциации соединений металлов в соприкосновении с различными газами и металлической фазой, приобретают большое практическое значение с точки зрения поверхностного окисления, их полное рассмотрение входит скорее в задачу книг по химической термодинамике, а не в. задачу настоящей монографии. Реальная ценность определения влияния давления газа на скорость окисления сводится к помощи в деле выяснения механизма окисления. [c.75]

    Все излагавшиеся в настоящем разделе данные были получены в опытах по окислению чистых металлов. Как уже отмечалось, ио выяснению влияния давления газа на скорость окисления сплавов сделано очень мало. Однако здесь следует упомянуть об одной особенности практического значения, которая состоит в том, что металлы, образующие сплав, взаимодействуют с конкретным газом с разными скоростя.ми. Надо полагать, что при значительном снижении давления газа менее благородные металлы должны, как правило, корродировать гораздо сильнее более благородных. Именно такая картина и наблюдается в действительности. Такое окисление называется избирательным (Томас и Прайс [258]). К этому вопросу мы возвратимся в последующих разделах. [c.79]

    При налаженном масляном хозяйстве большая часть масел может быть использована повторно, так как глубокое изменение претерпевает лишь незначительная часть индустриальных масел, которые в процессе работы загрязняются различными посторонними примесями частицами металла от износа трущихся поверхностей абразивом, влагой, пылью и т. н. Помимо этого под влиянием кислорода воздуха масла постепенно окисляются с образованием смолистых веществ. В зависимости от рабочих условий, давлений, скоростей, температур, каталитического действия металла и т. п. процесс окисления масел протекает в большей или меньшей степени. Однако в подавляющем числе случаев при нрименении индустриальные масла в основной массе практически не изменяют своих свойств и могут быть использованы повторно без глубокой регенерации их методами химической очистки, в том числе в качестве базового масла для изготовления смазочно-охлаждающих жидкостей с присадками. При регенерации последних нрисадки могут быть введены дополнительно. [c.194]

    Когда в системе присутствует вода, интенсивность (скорость) коррозионной реакции зависит от температуры, давления, наличия диоксида углерода (СО2) и/или сероводорода (НгВ ), pH среды (воды), наличия кислорода (О2). Другие загрязняющие воду примеси, такие как хлориды (С1 ), бикарбонаты (НСО 3) и бактерии, также оказывают существенное влияние на коррозию, влияя на величину pH, окисление металла, удельную проводимость электролита, защитные свойства образующихся продуктов коррозии. Более детальное освещение проблемы коррозии в нефтепромысловых средах можно найти в других работах, в частности,в работе [2]. [c.5]


    В равновесии с водой при нормальных температуре и давлении такие топлива содержат в зависимости от состава 2—3 % воды. Влияние воды в первую очередь проявляется в уменьшении механической прочности материала (этот эффект обратим). Долговременное воздействие приводит к гидролизу полимера и пластификаторов, нитрации и окислению стабилизаторов, а также гидролизу и окислению баллистических модификаторов, т. е. к необратимым реакциям, В присутствии биологически активных агентов происходит погружение углеводородов и нитратов. Скорость вымывания растворимых солей невелика. Алюминий, добавляемый в небольших концентрациях для подавления резонансного горения и повышения отдаваемой энергии, не подвергается быстрому воздействию солёной воды из-за пассивации металла нитратами и медленной диффузии солей через коллоид. [c.494]

    Применение катализаторов в процессе жидкофазного окисления н-бутана позволяет сократить период индукции, увеличить скорость и регулировать селективность окисления. В качестве катализаторов применяют соли жирных кислот с металлом переменной валентности, растворимые в реакционной смеси Мп, Со, Сг, В , Се. Данные о влиянии катализатора на состав продуктов окисления н-бутана при давлении 56 ат и температуре 175 °С приведены в табл. 19. [c.131]

    Сложность процесса окисления каучуков и резин обусловливается одновременным протеканием различных реакций. Влияние того или иного воздействия неодинаково сказывается на каждой из этих реакций, вследствие чего изменяется характер и направление суммарного процесса. Поэтому наблюдаются следующие явления 1) изменение интенсивности одного из внешних факторов (температуры, давления кислорода и т. д.) качественно изменяет суммарный эффект 2) различные антиоксиданты (ингибиторы окисления) неодинаково влияют на характер окисления каучука (резины) 3) катализаторы окисления (соли поливалентных металлов) изменяют не только скорость, но и направление суммарного процесса 4) в различных условиях опыта одно и то же количество поглощенного кислорода вызывает различные изменения физических и механических свойств каучука или резины. [c.13]

    Скорость автоокисления жиров возрастает при увеличен содержания кислорода в окружающей среде (точнее, его па циального давления). На этом основан способ хранения масел жиров в среде с пониженным содержанием кислорода (наприме в среде с повышенным содержанием азота). Окисление жир ускоряется с повышением температуры хранения и под возде ствием световой энергии. Ионы металлов переменной валентное (Си, Ре, Мп, N1) могут оказывать как каталитическое, так ингибирующее действие на процесс автоокисления жиров. Бо/ шое влияние на скорость окисления оказывают антиоксидан (ингибиторы), в первую очередь антиоксиданты фенольной пр роды, например, бутилокситолуол. Ингибирующей активностью о ладают многие природные вещества, переходящие в масла п извлечении их из масличных семян (токоферолы, госсипол) образующиеся при этом соединения — меланоидиновые, мел нофосфолипиды и др. [c.36]

    Время от времени возникает вопрос о тохм, влияет ли ионизация газов на скорость окисления металлов, с которыми они приходят в соприкосновение. Этим вопросом интересовался Драв-никс [556], исследовавший влияние ионизации различных газов на скорость окисления тех или иных металлов. Его опыты показали, что в активированном и обычном кислороде при давлении 0,5 мм рт. ст. скорость окисления тантала (500° С), циркония (600 и 986° С), никеля (690° С) н меди (690° С) фактически оставалось неиз.менной. Действие ионизироваиного и обычного (сухого) воздуха (р = 0,6 мм рт. ст.) на цирконий при 986° С также было одинаковым. Соответствующие исследования при 986° С с водяным паром, углекислым газом и моноокисью углерода при низком давлении (0,3—0,6 мм рт. ст.) -показали незначительную разницу в действии ионизированных и обычных газов, а именно действие ионизированной двуокиси углерода СОг оказалось сильнее, а действие Н 0 и СО слабее действия соот- [c.219]

    Исследовалось влияние катализаторов на воспламенение и горение твердого топлива на основе ПХА [94]. Металлические катализаторы, такие, как СиО, СГ2О3, РегОз, МпОг и КМПО4, повышают порог горения ПХА по давлению, тогда как разлагающиеся соли аммония (такие, как ЫН4С1) ингибируют горение ПХА. Каталитическое действие солей металлов на связующее, как правило, сводится к ускорению окисления НС. Что касается твердых топлив, то скорость их горения возрастает при добавлении в рецептуру РегОз, производных ферроцена, хромата меди и других соединений переходных металлов. Существуют разные точки зрения на механизм каталитического действия этих присадок, поскольку катализаторы могут оказывать влияние на реакции в газовой фазе, на подповерхностные реакции в твердой фазе и на реакции на поверхности как по отдельности, так и одновременно. Известно, что эффективность катализатора меняется в зависимости от его типа, концентрации, размера его частиц и давления. [c.86]

    Электродные процессы всегда протекают на границе фаз. Особенностью этих реакций является то, что они зависят еще от одной интенсивной переменной — потенциала или поля,— влияющей нз свободную энергию а) адсорбции реагентов, б) адсорбции промежуточных частиц и в) активации реакции. Что касается последнего, то роль потенциала аналогична роли давления, например в изменении скоростей реакций в конденсированных фазах. На протекание электродных реакций оказывают влияние также специфические поверхностные свойства металлов, такие, как работа выхода электрона, поверхностная концентрация дефектов, энергия адсорбции промежуточных и исходных частиц, и именно в этом отношении можно говорить о предмете электрокатализа. Аналогично тому как скорость реакции обмена Нз — Вг меняется в весьма широких пределах при катализе на различных металлах и окислах, кинетическая степень электрохимической обратимости, например в случае реакции выделения водорода при обратимом потенциале, изменяется более чем на одиннадцать порядков при переходе от активной платины к гладкому свинцу. Позднее электрокатализом стали называть реакции электрохимического окисления органических соединений, протекающие через стадию диссоциативной хемосорбции на электроде, в которых специфические эффекты каталитической диссоциации тесно связаны с электрохимическими процессами переноса заряда. Однако подобное толкование термина электрокатализ не является новым по существу, аналогичные стадии каталитической диссоциации и электрохимической ионизации имеют место в реакции водородного электрода, исследовавшейся с подобной точки зрения Фрумкиным и его сотрудниками начиная с 1935 г. Таким образом, большое значение в электрокатализе имеет электрохимическое поведение промежуточных частиц, возникающих либо в стадиях перехода заряда, либо в результате диссоциативной хемосорбции, предшествующей или сопутствующей стадии перехода заряда. Большое количество рассматриваемых работ было посвящено исследованию реакций выделения и растворения водорода и кислорода, а в последнее время — реакций окисления органических соединений. [c.392]

    СО легко внедряется по связи металл — алкил, давая комплексы металла с ацилом. Эти реакции часто обратимы. Как прямая реакция, так и обратная идут при самых разных условиях, зависящих от природы металла, состояния его окисления и наличия других лигандов. Хорошим примером изменения свойств комплекса, происходящего в результате замены одного металла другим, служит изменение скорости диссоциации СНдСОСо(СО)4 при замене кобальта на марганец первый комплекс диссоциирует в 2250 раз быстрее, чем СНзСОМп(СО)5 [7]. Влияние окружающих металл лигандов было продемонстрировано на примере комплекса [8] СНзВЬ1С1(СО)(РВз)2- При В = к-С4Нд внедрение СО осуществляется при обычных температуре и давлении. Но если В = РЬ, реакция в этих условиях совершенно не идет. [c.106]


Смотреть страницы где упоминается термин Влияние давления на скорость окисления металлов: [c.216]    [c.150]    [c.219]    [c.105]    [c.86]    [c.198]    [c.352]   
Основы учения о коррозии и защите металлов (1978) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы окисление

Окисление давлении

Скорость влияние давления

Скорость давлении

Скорость окисления



© 2025 chem21.info Реклама на сайте