Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы, определяющие скорость транспорта

Рис. IV,10, IV,И и IV,13—IV,19 показывают, что на поляризационной кривой восстановления кислорода, даже если бы процесс не осложнялся окислением металла (например, кривые vl к на рис. IV,10), имеется область чисто электрохимической кинетики. В этой области скорость восстановления кислорода столь мала, что аог У поверхности электрода близка к ао в глубине раствора, и кинетика определяется протеканием самой электродной реакции. Имеется область диффузионной кинетики, где скорость процесса определяется транспортом кислорода к поверхности электрода (при fflOj = О скорость диффузии максимальна). Имеется и область смешанной кинетики, когда скорость реакции и скорость диффузии не слишком сильно отличаются друг от друга. Рассмотрим подробнее случай смешанной кинетики или, как это часто называется в коррозионной литературе, область смешанного диффузионного и электрохимического контроля. Рис. IV,10, IV,И и IV,13—IV,19 показывают, что на <a href="/info/638349">поляризационной кривой восстановления</a> кислорода, даже если бы процесс не осложнялся <a href="/info/18878">окислением металла</a> (например, кривые vl к на рис. IV,10), имеется область чисто <a href="/info/15225">электрохимической кинетики</a>. В этой области <a href="/info/1772604">скорость восстановления кислорода</a> столь мала, что аог У <a href="/info/10623">поверхности электрода</a> близка к ао в глубине раствора, и <a href="/info/445307">кинетика определяется</a> протеканием самой <a href="/info/71293">электродной реакции</a>. Имеется <a href="/info/1805593">область диффузионной кинетики</a>, где скорость процесса определяется транспортом кислорода к <a href="/info/10623">поверхности электрода</a> (при fflOj = О <a href="/info/24177">скорость диффузии</a> максимальна). Имеется и <a href="/info/941956">область смешанной</a> кинетики, когда <a href="/info/2823">скорость реакции</a> и <a href="/info/24177">скорость диффузии</a> не слишком сильно <a href="/info/1093712">отличаются друг</a> от друга. Рассмотрим подробнее <a href="/info/1701022">случай смешанной</a> кинетики или, как это часто называется в <a href="/info/1623681">коррозионной литературе</a>, <a href="/info/941956">область смешанного</a> диффузионного и электрохимического контроля.

    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]

    Однако решение общей системы уравнений, описывающей протекающий в реакторе процесс, не представляется возможным ввиду значительной сложности нелинейных дифференциальных уравнений переноса с коэффициентами (вязкость, коэффициент диффузии и т. д.), зависящими от искомого распределения температуры реакционной массы. Как и всегда при анализе сложных процессов, нужны приемлемые упрощения их описания. В теории химических реакторов принято полагать, что вместо сложного химического, теплового и диффузионного взаимодействия можно анализировать более простые предельные варианты процессов 1) скорость собственно химической реакции значительно меньше скорости подачи реагентов в аппарат и транспорта их из основной массы потока в зону непосредственного реагирования, при этом интегральная скорость всего процесса не зависит от интенсивности массообменных (диффузионных) процессов, а определяется кинетикой химической реакции (концентрацией и температурой реагентов),— это так называемая кинетическая область протекания процесса 2) скорость химической реакции велика и общий темп химического превращения определяется скоростью транспорта реагентов в зону реагирования,— диффузионная область  [c.107]

    Скорость процесса адсорбции определяется пе скоростью собственно адсорбции, которая протекает очень быстро, а скоростью подвода молекул из объема к поверхности зерен адсорбента и скоростью транспорта молекул с поверхности зерна к центру его по многочисленным порам. Эти процессы определяются скоростью диффузии молекул. [c.260]


    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]

    Общая скорость процесса определяется скоростью создания пересыщения, а также скоростью транспорта вещества к растущей поверхности, т. е. эффективной диффузией [1, 3]. Физико-химические особенности кристаллизации из растворов (значения термодинамических потенциалов, активности и др,) при инженерных расчетах процессов в КС обычно не используются. Пересыщение АС — это положительная разность концентрации С растворенного вещества и зависящей от температуры равновесной концентрации Ср (растворимости), В обычно (в стационарном процессе) используемом достаточно узком температурном интервале  [c.315]

    Так как каталитическая реакция может протекать в самых разных условиях, следует ожидать, что условия реакции могут влиять на способ-переноса молекул газа через поры, а также на наблюдаемую кинетику процесса, если скорость транспорта газа сравнима со скоростью химической реакции. Поэтому уместно рассмотреть различные виды транспорта газообразных молекул через пористую среду. Скорость, с которой молекулы диффундируют через пористую среду, во много раз меньше скорости поступательного движения молекул. Это объясняется тем, что во время прохождения через катализатор молекулы сталкиваются со стенками пор и с другим молекулами, что приводит к совершенно беспорядочному их движению. Однако достаточно определить суммарную скорость транспорта молекул сквозь воображаемую плоскость, градиент концентраций по сторонам которой известен. Эта суммарная скорость зависит как от соотношения величины радиуса пор и средней длины свободного пробега молекул, так и от того, будет иметь место общий перепад давления по длине поры или нет. Следует различать три тина массопередачи в порах. [c.188]

    Классификация. Хим.-технол. процесс в целом - это сложная система, состоящая из единичных, связанных между собой элементов и взаимодействующая с окружающей средой. Элементами этой системы являются 5 групп процессов 1) механические - измельчение, грохочение, таблетирование, транспортирование твердых материалов, упаковка конечного продукта и др. 2) гидромеханические - перемещение жидкостей и газов по трубопроводам и аппаратам, пневматич. транспорт, гидравлич. классификация, туманоулавливание, фильтрование, флотация, центрифугирование, осаждение, перемешивание, псевдоожижение идр. скорость этих процессов определяется законами механики и гидродинамики 3) тепловые - испарение, конденсация, нафевание, охлаждение, выпаривание (см. также Теплообмен), скорость к-рых определяется законами теплопередачи 4) диффузионные или массообменные, связанные с переносом в-ва в разл. агрегатных состояниях из одной фазы в другую,- абсорбция газов, увлажнение газов и паров, адсорбция, дистилляция, ректификация, сушка, кристаллизация (см. также Кристаллизационные методы разделения смесей), сублимация, экстрагирование, жидкостная экстракция, ионный обмен, обратный осмос (см. также Мембранные процессы разделения), электродиализ и др. 5) химические. Все эти процессы рассматриваются как единичные или основные. [c.238]

    При pH = 12,0 Ч-12,5 перемешивание раствора сильно ускоряет осаждение меди (см. рис. 35) видимо, в этих условиях скорость процесса в значительной мере определяется скоростью транспорта Си (II) к поверхности. Эффект перемешивания больше при более высокой концентрации глицерина, что объясняется повышением вязкости раствора. [c.84]

    Скорость процесса в целом определяется скоростью наиболее медленной стадии, поэтому транспорт может определять скорость химического превращения. Впервые это было отмечено Нернстом при изучении окисления аммиака на платине. [c.267]

    Возникновение поляризации обусловлено замедлением в ходе электродного процесса. Поскольку скорость процесса, состоящего из нескольких последовательных стадий, определяется скоростью наиболее медленной (лимитирующей) стадии, то появление поляризации связано непосредственно с этой стадией. Если известна природа лимитирующей стадии, вместо термина поляризация употребляется, как правило, термин перенапряжение . Если наиболее медленной стадией является транспорт реагирующих веществ к электроду или продуктов, образовавшихся в результате электрохимической реакции от него, перенапряжение называется диффузионным (т]д). Когда наиболее медленно протекает стадия разряда или ионизации, возникает электрохимическое перенапряжение, называемое также перенапряжением (электронного) перехода (tin). Торможение в дополнительных стадиях сопровождается возникновением собственно фазового перенапряжения (т1ф) и перенапряжения реакции (г р). Каждый вид перенапряжения обусловлен специфическим механизмом его появления и описывается собственными кинетическими уравнениями. В общем случае электродная поляризация складывается из всех видов перенапряжения  [c.499]


    В других условиях подобные процессы могут ограничиваться скоростью диффузии в газовой фазе. В подобных случаях говорят, что реакция происходит в диффузионном режиме. Если химическая реакция идет со скоростью существенно меньшей, чем транспорт веществ, то именно она определяет скорость суммарного процесса. В этом случае говорят, что процесс протекает в кинетическом режиме. [c.141]

    В заключение можно сказать, что идея ключевых ферментов является весьма ценной, однако следует иметь в виду, что в зависимости от условий в роли ключевых могут выступать различные ферменты. Важно также отдавать себе отчет в том, что скорости реакций часто определяются скоростью диффузии того или иного соединения через мембрану. Следовательно, процессы транспорта через мембраны также могут быть лимитирующими стадиями метаболизма. [c.65]

    Уменьшение сопротивлений мас-со- и теплопереносу, лимитирующих скорость превращения. В некоторых случаях (см. раздел VIII) скорости массо- или теплопереноса через границу раздела фаз определяют скорость превращения. Ламинарная пограничная пленка оказывает основное сопротивление этим процессам, поскольку перенос массы через нее осуществляется только диффузией, а перенос теплоты — теплопроводностью, т. е. относительно медленно. За этой пленкой перенос массы и теплоты происходит главным образом конвекцией. Чем больше толщина пограничной пленки, тем выше сопротивление. В связи с этим наименее выгоден ламинарный режим движения потоков в системе. При высокой турбулентности потоков толщина пограничной ламинарной пленки меньше и, следовательно, легче и более быстро осуществляется транспорт массы и теплоты в другую фазу. [c.414]

Рис. 5.1. Идеальная биопленка, в которой транспорт вещества осуществляется в результате диффузии. Скорость суммарного процесса может определяться скоростью диффузии. Рис. 5.1. <a href="/info/231263">Идеальная биопленка</a>, в которой <a href="/info/100703">транспорт вещества</a> осуществляется в <a href="/info/1387748">результате диффузии</a>. <a href="/info/1019091">Скорость суммарного процесса</a> может <a href="/info/463529">определяться скоростью</a> диффузии.
    В технологии редких металлов процесс иодидного рафинирования проводят в закрытых сосудах при глубоком вакууме, поэтому перемещение газа между зонами происходит в результате диффузии и скорость транспорта вещества определяется скоростью диффузии. Термическая конвекция в иодидных процессах, как правило, незначительна. [c.314]

    При реальном протекании гетерогенной реакции в природе или технике наблюдаемая скорость реакции определяется, с одной стороны, истинной химической кинетикой на поверхности, а с другой,— скоростью транспорта реагирующих веществ к этой поверхности молекулярной или конвективной (в частности турбулентной) диффузией. Исследование протекания химических процессов в подобных условиях составляет предмет диффузионной кинетики. [c.51]

    Во многих случаях было установлено, что скорость транспорта вещества в соответствующем интервале давлений определяется скоростью диффузии. Это имеет место, например, для процесса транспорта циркония в виде иодида на раскаленную проволоку [32, 33] [c.25]

    Структура пористого твердого тела оказывает большое влияние на скорость транспорта частиц извлекаемого компонента при экстрагировании. Поэтому всегда надо знать особенности внутреннего строения твердого материала, а также механизм взаимодействия этого, материала с растворителем. Действительно, если растворитель взаимодействует с полностью растворяющимся в нем твердым материалом, то это взаимодействие происходит в основном на поверхности твердой фазы и только в некоторых случаях может распространяться на внутреннюю структуру частиц. Если же происходит экстрагирование или выщелачивание компонента, распределенного в порах (или клетках) твердого тела-носителя, то в этом случае взаимодействие растворителя и твердого тела осложняется еще и тем, что извлекаемый компонент может находиться в различных агрегатных состояниях — твердом или жидком. Скорость процессов экстрагирования (выщелачивания) определяется по самой медленной стадии процесса, т. е. скоростью переноса растворителя и продуктов взаимодействия в пористой структуре твердого тела-носителя, на поверхности контакта фаз или в потоке жидкости. [c.6]

    Время установления равновесного состояния при смещении потенциала стали в отрицательную сторону от значения собственного стационарного потенциала при наложении внешнего катодного тока определяется временем выхода диффузии кислорода на новый стационарный режим. Этот процесс связан с транспортом кислорода в грунте. Перенос кислорода в грунте может осуществляться аэродинамическим, гидродинамическим механизмом, а также капиллярным движением, конвекционным перемешиванием жидкой или газовой фаз и, наконец, диффузией кислорода В газовой и жидкой фазах почвы. Разнообразие почвенных условий приводит к большим колебаниям в скоростях подачи кислорода к электроду. [c.149]

    Различная природа элементарных стадий определяет и разные закономерности их скоростей. Общим является то, что в них образуются, превращаются либо разлагаются промежуточные соединения (кроме стадий транспорта). Скорости накопления и исчезновения промежуточных соединений, как и их концентрации, определяют скорости стадий и тем самым скорость всего процесса. [c.37]

    В гетерогенных процессах реагирующие компоненты системы находятся в разных фазах и, естественно, реакция протекает в пограничном слое—на границе раздела фаз. Практически наиболее частым случаем гетерогенных систем является комбинация твердого тела с жидкой или газообразной фазой. Поэтому для гетерогенных процессов особую важность имеет транспорт вещества из объема жидкости или газа к твердой поверхности. В Дальнейшем будет подробно освещено, в каких случаях скорость процесса определяется диффузией реагирующих веществ к внешним или внутренним активным областям катализатора, сейчас же кратко остановимся на кинетической стороне явления внешней диффузии. [c.390]

    Специфика физикохимии процесса сульфирования и условия его проведения обусловливают решение задачи моделирования процесса при следующих допущениях 1) каждая гранула сополимера в условиях интенсивного перемешивания окружена сферическим слоем жидкой сферы (сферическая ячеечная модель) 2) жидкая среда идеально перемешана 3) гранула сополимера является изотропным телом, свойство массопроводимости которого не меняется по сечению в ходе образования продукта реакции 4) выполняются условия равнодоступности поверхности 5) концентрация реагентов в зоне максимальной скорости химического превращения сополимера в ионит определяется диффузионным транспортом исходного вещества. [c.352]

    Растворение в общем случае предполагает удаление слоя твердого материала вдоль пути движения трещины. Такой слой может быть очень небольшим, в предельном случае это только монослой металла по стенке трещины, который реагирует в зоне вершины. Таким образом, в этом случае может п не быть принципиального различия между гипотезой растворения и гипотезой, согласно которой адсорбция или хемсорбция в вершине трещины являются основными процессами, разрушающими напряженные химические связи мел<ду атомами металла в вершине трещины [212, 2 13], так как адсорбция является первой стадией процесса растворения. Реакции, происходящие на поверхности, могут быть представлены в виде последовательных стадий, из которых самые медленные будут определять скорость полного процесса (т. е. скорость роста трещины). Возможными стадиями являются 1) транспорт реагентов к поверхности 2) адсорбция реагентов 3) реакции на поверхности 4) десорбция продуктов реакций 5) перенос выделенных продуктов с поверхности в объем раствора. Трудность состоит в том, чтобы предсказать теоретически стадию, определяющую скорость, так как это зависит не только от данной комбинации материал — среда, но и от коэффициента интенсивности напряжений в вершине трещины. [c.282]

    Важным технологическим процессом подготовки нефти к транспорту является обезвоживание нефти, т. е. удаление из нефти воды. Осуществляется этот процесс в специальных емкостях (отстойниках), в которых капли воды отделяются от нефти путем гравитационной седиментации. Размер этих емкостей должен обеспечить осаждение из нефти достаточно мелких капель. Размер капель, как правило, мал, так что скорость их осаждения подчиняется закону Стокса V = 2Ap .RV9 le, где Ар — разность плотностей фаз, — динамическая вязкость сплошной фазы. Для характерных значений Ар = 200 кг/м , 1 = 10 Па с, / = 10 мкм имеем [/=0,5 10" м/с. Это значит, что из слоя водонефтяной эмульсии высотой 1 м вьшадут все капли радиусом более 10 мкм за время I - 2 10 с = 50 ч. Для Е = 100 мкм это время составит I - 0,5 ч. Таким образом, если удастся увеличить радиус капель воды в эмульсии в 10 раз (например, от 10 до 100 мкм), то время разделения эмульсии уменьшится на два порядка, а следовательно, во столько же раз уменьшится объем (длина) отстойника. Столь большое увеличение размера капель за относительно неболыпое время можно осуществить, поместив эмульсию в однородное внешнее электрическое поле. Для определения времени, необходимого для укрупнения капель воды в нужное число раз, следует определить скорость коалесценции капель, т. е. исследовать динамику процесса укрупнения капель в эмульсии. [c.244]

    Природа взаимодействия между исходным раствором и материалом мембраны будет оказывать значительное влияние как на равновесную концентрацию разделяемых веществ в мембранной фазе, так и на скорость транспорта компонентов смеси через мембрану. Необходимо отметить, что выбор полимера для процесса испарения связан с большими ограничениями. Перванорационные мембраны должны обладать не только высокими показателями селективности, производительности и механической прочности, но и выдерживать прямой контакт с органическими растворителями при новышенной температуре. Со стороны пермеата мембрана бывает почти сухой, по крайней мере, при работе по вакуумной схеме, поэтому набухает неравномерно, что влечет за собой дополнительную нагрузку на мембрану. Оптимально удовлетворяют этим требованиям композитные мембраны, в которых механическую, термическую и химическую стойкость обеспечивает практически инертная по отношению к пермеату пористая подложка, а характеристики массопереноса и селективности определяются тонким активным слоем. [c.218]

    Значительное влияние оказывает на скорость диффузии ПХФ пз сетки сшитой МЦ химическое строение мостичной связи. Более гибкие мостичные связи, образованные реагентом ДМАЭ (№ оп. 5 и 0), создают подвижную сетку, оказывают пластифицирующий эффект, в результате чего скорость транспорта реагентов из сетки возрастает (Д оп. 3 и 6). Таким образом, процессы диффузии низкомолекулярного органического вещества из пространственной сетки сшитого эфира целлюлозы определяются ее строением (т. е. числом мостичных связей, их строением и распределением) и могут служить характеристикой таких систем. [c.226]

    Закономерности процессов сушки определяются закономерностями одновременно протекающих тепло- и массопередачи. Поэтому сушка является тепломассообменным процессом. От скорости распространения теплоты в материале зависит интенсивность испарения находящейся в нем влаги, а транспорт образовавшегося пара из материала в окружающую среду определяется скоростью переноса вещества в материале. Влажность материала характеризуют влагосодержанцем и — отношением массы влаги, содержащейся во влажном материале, к массе содержащегося в нем сухого вещества. Так же характеризуют содержание влаги в окру-, жающей среде (воздухе). Влагосодержание воздуха х — это масса влаги, приходящаяся на единицу массы абсолютно сухого воздуха. При определенной температуре материал, находясь в равновесии с окружающей средой, имеет определенное влагосодержание, зависящее от влагосодержания окружающей среды. Связь влагосодер-жаний материала и воздуха изображается в виде изотермы адсорбции. Описание условий фазового равновесия в процессах сушки не отличается, таким образом, от рассмотренного выше применительно к процессам адсорбции. [c.523]

    Транспорт к поверхности может осуществляться либо как диффузия молекул через более или менее неподвижный газ, либо в форме потока газа. Транспорт потоком газа может представлять собой медленную стадию в некоторых промышленных процессах на очень активных катализаторах, но эта проблема скорее инженерная, чем химическая. Диффузия молекул может вполне определять скорость во многих случаях хемосорбцни и физической адсорбции, " к как оказывается, что коэффицие-.т прилипания при соударении с поверхностью при рассматриваемых температурах очень близок к единице. Особый интерес представляют два случая когда молекула подходит к плоской поверхности, доступной для газа, и когда она подходит к внутренней поверхности катализатора через длинную пору. У катализаторов типа никеля Ренея или металлов, отложен- [c.213]

    Поэтому если диффузия в твердом состоянии в местах контактов определяет скорость общего процесса, то всегда должно быть полезным введение газовой фазы, с помощью которой одно твердое вещество можно транспортировать к поверхности другого. Тогда нетранспорти-рующееся твердое вещество будет нагреваться в известной степени в газообразном растворе транспортирующегося вещества. На поверхности частиц это транспорти- [c.148]

    В промышленной практике известен ряд процессов гетерогенного катализа в жидкой фазе с участием газообразного реагента. При гидрировании жиров, непредельных и ароматических углеводородов, восстановлении нитро- и нитрильных групп циклоалифатических, алифатических и жирноароматических соединений процесс проводится в жидкой фазе, контактируемой с водородом. Известны случаи окисления жирных и жирноароматических углеводородов кислородом воздуха в условиях жидкофазного гетерогенного катализа. Все эти процессы относятся к такНм, скорость которых определяется не только диффузией реагирующих веществ к поверхности частицы катализатора, но также скоростью массообмена между газовой и жидкой фазами и дуффузией частиц растворенного газа в жидкой фазе. Поскольку диффузия частиц жидкой фазы к поверхности зерен катализатора гораздо менее затруднена, скорость процесса может быть лимитирована скоростью транспорта частиц из газовой фазы к поверхности катализатора через поверхность раздела газовой и жидкой фаз. [c.430]

    О и 1 она характеризует область протекания реакции. Если оЬо (м- -1 —М ) и%Ук (-Ро.)а, то Рэкв)к О, и имеет место чисто диффузионный режим. Если же (па 1 — Па) < и% к (Ро.), то (Рэкв) к (Рог)к- Это означает, что диффузионные ограничения по транспорту кислорода пренебрежимо малы скорость процесса определяется кинетикой реакции растворения. Между этими двумя крайними случаями лежит область переходных режимов. [c.144]

    В зависимости от динамических характеристик, по мнению авторов [236], ионоселективные электроды можно разделить на две группы 1) электроды, в которых электрохимический сигнал возникает в результате разделения зарядов на поверхности мембраны, погруженной в а1 1лизируемый раствор (твердые и жидкостные ионообменные мембранные электроды), и 2) электроды, в которых электрический сигнал возникает в результате селективной ионообменной реакции, на которую также оказывают влияние процессы мембранного транспорта в теле самой мембраны (электроды с мембранами на основе нейтральных переносчиков ). Скорость изменения потенциала первого типа электродов определяется скоростью переноса ионов в фазе анализируемого раствора к поверхности мембраны, поскольку скорость ионообменной реакции (функция активности измеряемого иона в растворе) достаточно велика. Так как на диффузионные процессы влияет гидродинамика проточной системы, динамические свойства электрода могут быть улучшены [c.165]

    Ряд экспериментальных данных строго подтверждает необходимость фосфолипидов для осуществления активного транспорта моновалентных катионов через мембрану. Исследования, выполненные на искусственных и природных мембранах, показали, что проницаемость биологических мембран для ионов и молекул в значительной мере определяется составом липидов и структурой их гидрофобных и гидрофильных компонентов. Барьерные свойства мембран зависят от природы углеводородной цепи фосфолипидов, взаимодействия фосфолипида и холестерина и химической природы полярных головок фосфолипидов, с уменьшением длины цепи жирнокислотных остатков фосфолипидов или увеличением степени их ненасыщенности увеличивается подвижность цепей, что в свою очередь повышает скорость диффузионных процессов, а также транспорт молекул-переносчиков. При взаимодействии фосфолипидов с холестерином уменьшается площадь фосфолипидов и, следовательно, их проницаемость. Природа полярных головок также влияет на проницаемость биологических мембран. Эффект ионной проницаемости зависит от заряда фосфолипида. Например, в грамположительных бактериях фосфатидилглицерин (заряжен отрицательно) селективно пропускает катионы и протоны, а лизилфосфатидилглицерин (заряжен положительно) —анионы. [c.381]


Смотреть страницы где упоминается термин Процессы, определяющие скорость транспорта: [c.133]    [c.140]    [c.647]    [c.71]    [c.71]    [c.218]    [c.26]    [c.55]    [c.4]    [c.156]    [c.142]    [c.9]    [c.134]    [c.101]   
Смотреть главы в:

Химические транспортные реакции -> Процессы, определяющие скорость транспорта




ПОИСК





Смотрите так же термины и статьи:

Процесс скорость

Транспорт, процесс



© 2025 chem21.info Реклама на сайте