Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы ряда трифенилметила

    Возникающий при этой реакции углеводородный радикал встречает другую молекулу кислорода и таким образом цепь продолжается. Найдено, что свободный трифенилметил катализирует окисление ряда соединений вследствие образования им перекисного радикала, инициирующего реакционные цепи, часто большой длины. [c.34]


    В течение последнего столетия в химии накопилось громадное количество описательных сведений. До сравнительно недавнего времени при изучении химических реакций—в частности, в области органической химии—интересовались преимущественно конечным результатом реакции, т. е. превращением исходных реагентов в продукты реакции. Важнейшие достижения органической химии пока еще носят именно такой характер. Однако физически мыслящий химик-органик все более начинает интересоваться самим механизмом реакции, понимая, что на промежуточных этапах между встречей реагентов и выделением продуктов реакции должны существовать неизвестные до сих пор ассоциации атомов. Ионы и свободные радикалы занимают все большее и большее место в общем словаре химика и не входят уже в компетенцию одних только специалистов по кинетике. Так, постулируется (и этот постулат неоднократно подтверждается), что при воздействии кислых реагентов на молекулы ароматических соединений (а также в целом ряде других реакций) в качестве промежуточного продукта образуются карбонатные ионы. При рассмотрении радикалов мы уже можем исследовать не только такие стабильные радикалы, как, например, радикал трифенилметил, но и значительно более активные, например метильный радикал. Его существование было впервые постулировано для истолкования кинетики целого ряда тепловых реакций и реакций разложения под действием света. В настоящее время существование метильного радикала не только доказано методами спектроскопии и масс-спектроскопии, но и определена его концентрация. Конечно, идентификация и описание промежуточных соединений представляет собой огромный шаг вперед по сравнению с положением, когда мы ничего не знали о существовании какого-либо соединения, кроме исходного реагента и конечного продукта реакции. Только после накопления большого числа данных о таких промежуточных соединениях можно надеяться найти ответ на вопрос о том, почему путь, по которому фактически протекает та или иная реакция, оказывается более предпочтительным, чем другие. [c.11]

    Радикалом в химии называется часть молекулы (обычно группа атомов), имеющая свободные валентности. Предположения о существовании радикалов, в частности органических, в свободном состоянии, возникшие еще в прошлом столетии, получили первое подтверждение в результате выделения русским ученым Ромбергом в 19СЮ г. свободного радикала трифенилметила [98]. Позднее был выделен ряд других триарилметильных радикалов [99]. Эти соеди- нения имеют одну свободную углеродную валентность, но три остальные настолько сильно насыщены, что вещество обладает лишь в малой степени той исключительной химической активностью, которая свойственна, как это было выясмено позже, более простым свободным радикалам. [c.32]


    По обоим методам (реакция с кислородом и окисью азота) энергия активации диссоциации гексафенилэтана оказалась равной 19 ккал (+1%). Циглер обратил внимание на тот факт, что энергия активации, требуемая для разрыва центральной связи С — С в гексафенилэтане, значительно больше теплоты диссоциации (ДЯ), которая составляет только 11 ккал (4 1%). Он указал, что у свободного радикала трифенилметила в растворе энергия, повидимому, на 3—4 ккал меньше, чем в момент образования. Вычисления Конанта показывают, что в ряду диксантила энергии активации (Е) также отличаются от теплот диссоциации ( А Я), но, к сожалению, его значения Д// основаны на весьма сомнительных теоретических предположениях [c.67]

    Свободные атомы и радикалы играют большую роль во многих химических процессах. В целом ряде случаев они являются теми активными центрами, которые ведут химический процесс. Это особенно относится к цепным реакциям. Свободные атомы (кроме инертных газов), как и радикалы, отличаются от молекул наличием свободных (одной или нескольких) валентностей. Этим часто и объясняется их высокая реакционная способность. Первый свободный радикал был открыт в 1900 г. Гомбергом, нашедшим, что гексафенилэтан (СбН5)зС—С(СвН5)з диссоциирует на два свободных радикала трифенилметила (СбН5)зС. Возможность возникновения свободных атомов в результате термической диссоциации предполагалась давно, но только в 1922 г. Вуд, откачивая водород из -разрядной трубки, установил, что в откачиваемом газе содержится атомный водород. В 1929 г. Пан-нет и Гофедиц открыли свободный нейтральный радикал метил [c.116]

    Иногда при восстановлении в неводных апротонных растворителях щелочной металл амальгамы и органическое вещество взаимодействуют с образованием металлорганиче-ского соединения. Последние являются весьма реакционноспособными соединениями, позволяющими осуществлять целый ряд интересных синтезов. Методы получения, свойства и реакции металлорганическнх соединений описаны в монографии [290]. Очень часто эти реакции протекают через промежуточную стадию образования свободных радикалов. Шлепком с сотрудниками 291,292] было показано, что взаимодействие хлорида трифенилметана с 1 % амальгамой натрия в эфирном растворе протекает с образованием в начале радикала трифенилметила, о чем можно судить по окрашиванию раствора в характерную для трифенилметила желтую окраску. Трифенилметил через некоторое время на поверхности амальгамы образует трифенилметилнатрий красного цвета  [c.100]


Смотреть страницы где упоминается термин Свободные радикалы ряда трифенилметила: [c.187]    [c.563]    [c.99]    [c.11]   
Смотреть главы в:

Начала органической химии Кн 2 Издание 2 -> Свободные радикалы ряда трифенилметила

Начала органической химии Книга 2 -> Свободные радикалы ряда трифенилметила




ПОИСК





Смотрите так же термины и статьи:

Свободные радикалы

Свободные радикалы ион-радикалы

Трифенилметав

Трифенилметилы



© 2025 chem21.info Реклама на сайте