Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возникновение симбиоза

    Заключительный раздел этой главы, посвященной проблемам коммуникации, следует отнести к вопросу межвидового общения. Люди сталкиваются с такими трудностями при общении друг с другом, что, казалось бы, проблемы экологических взаимоотношений не особенно существенны для них. Однако если внимательно взглянуть на то, что можно рассматривать более широко как метаболические циклы в биосфере, то легко убедиться в важности этого аспекта биохимии. Достаточно представить себе, что возникновение эукариот связано, возможно, с установлением симбиотических отношений между двумя видами прокариот. Точно так же развитие высших растений может быть обусловлено симбиозом между водорослью и организмом, неспособным к фотосинтезу. [c.367]


    Активный ил представляет собой темно-коричневые хлопья, размером до нескольких сотен микрометров микроскопия показала, что он состоит на 70% из живых организмов и около 30% составляют твердые частицы неорганической природы. Живые организмы вместе с твердым носителем, к которому они прикреплены, образуют зооглей - симбиоз популяций организмов, покрытый общей слизистой оболочкой. Причины возникновения хлопьев активного ила не совсем понятны, зооглей может формироваться за счет флокуляции или адгезии клеток на поверхности носителя. Взаимодействие микроорганизмов в пределах одного зооглея достаточно сложно и основой его служат, по всей видимости, симбиотические взаимосвязи организмов разных популяций. [c.101]

    Конечно, круг вопросов, относящихся к химической экологии, настолько велик, что затронуть их все невозможно даже в книге большего объема. Сравнительно мало места уделено химической экологии растений, не рассматриваются химические аспекты симбиоза насекомых и микроорганизмов. Но помимо них существует практически очень важный вопрос о влиянии человеческой деятельности на биосферу и об ответном давлении биосферы на человека. Проблема биологического повреждения материалов (затронутая в книге на примере микотоксинов и фитотоксинов) имеет множество химических аспектов. Чрезвычайно серьезна проблема возникновения у вредоносных организмов иммунитета к химиотерапевтическим средствам, гербицидам, инсектицидам. Исключительно важна проблема всесторонней проверки токсичности и мутагенности всех новых химических продуктов. Прямое отношение к химической экологии имеет проблема энергетических, минеральных и пищевых ресурсов при существующих высоких темпах индустриализации и роста народонаселения. Сейчас на повестке дня стоит вопрос об отыскании новых эффективных источников энергии, способных заменить нефть, уголь и газ. Также актуален поиск новых источников пищевого белка для обеспечения потребностей растущего населения. Эти вопросы взаимосвязаны если своевременно [c.7]

    Из вероятных путей возникновения паразитизма нельзя исключить возможность превращения симбиотических отношений в отношения паразитические. Для симбиоза с высшим растением, так же как и для паразитизма, микроорганизм должен обладать способностью преодолевать защитные приспособления растения. Вполне реально возникновение симбиотических отношений в результате эволюции отношений паразитических. Однако не менее вероятен и противоположный путь развития. [c.28]


    Генетический анализ показал, что для возникновения и поддержания подобного симбиоза необходима координированная экспрессия многих генов, принадлежащих и бактерии, и растению. Диалог межд бактерией и клеткой-хозяином начинается со связывания бактерии с корневыми волосками. В результате этого связывания активируется ряд генов [c.407]

    Полагают, что энергетические органеллы эукариот ведут свое происхождение от прокариотических клеток, которые были захвачены примитивными эукариотами путем эндоцитоза на ранних этапах эволюции и вступили с ними в симбиоз. Это позволяет объяснить, почему митохондрии и хлоропласты содержат свою собственную ДНК. Но за миллиард лет, прошедших с момента возникновения первых эукариотических клеток, эти органеллы утратили большую часть своего генома и стали тем самым зависимы от белков, которые кодируются ядерным геномом, синтезируются в цитоплазме и только потом переходят внутрь органелл. В то же время и клетка- хозяин зависит теперь от этих органелл-они дают ей молекулы АТР, которые нужны для осуществления биосинтетических реакций, для транспорта ионов и растворенных веществ и для других непрерывно идущих процессов жизнедеятельности [c.8]

    Первая сталия в возникновении симбиоза - спепифическое узнавание бактерией тонких корневых волосков, отходяших от специализированных эпидермальных клеток растения-хозяина. После связывания с клетками эпидермиса корня растущая бактерия проникает в растение с помощью инфекционных филаментов и вызывает деление кортикальных клеток, лежащих под эпидермальными в результате образуется большой корневой клубенек (рис. 20-29, Л). Бактерии внедряются во все новые кортикальные клетки, заселяя их цитоплазму. Примерно половина массы каждого зрелого клубенька приходится на внутриклеточные бактерии, которые утратили большую часть своей клеточной стенки. Плазматическая мембрана каждой такой бактерии окружена еше одной мембраной, которую продупирует клетка-хозяин. Именно эти видоизмененные бактерии, именуемые бактероидами, и фиксируют азот, который в конечном итоге используется растением (рис. 20-29, Б). [c.407]

    Способность эукариот захватывать оформленные твердые частички, в том числе и живые клетки, имеет фундаментальное биологическое значение. В эндоцитозе можно усмотреть предпосылки для возникновений эндосимбиоза и его механизм. Обычно твердые частички, поглощенные путем фагоцитоза амебой, перевариваются ею и полностью ли-зируются. В ряде случаев, однако, результатом может быть внутриклеточный симбиоз. Наиболее известный пример такого эндосимбиоза-ассоциация клеток бобовых растений с бактериями рода Rhizobium в корневых клубеньках (разд. 13.1). Подобного рода эндосимбионты широко распространены у эукариот (разд. 17.2.1)..Способность эукариотических клеток приобретать эндосимбионтов говорит в пользу теории [c.26]

    Таким образом, значительная часть генетической системы, контролирующей развитие клубеньков, возникла в ходе коэволюции растений с АМ-грибами. Поэтому способность к образованию АМ необходимо рассматривать как одну из ключевых преадаптаций растений, обусловивших возникновение азотфиксирующих симбиозов. Однако в процессе коэволюции бобовых и ризобий возник ряд новых стадий взаимодействия (наиболее существенными из них был эндоцитоз и формирование автономных симбиосом), обеспечивших усложнение морфологии системы и глубокую функциональную интеграцию партнеров. [c.189]

    Как же повлияло накопление молекулярного кислорода в атмосфере на анаэробные организмы, положившие начало жизни на Земле В мире, богатом кислородом, который не мог быть ими использован, такие организмы оказались в невыгодных условиях. Некоторые из них, без сомнения, вымерли. Другие либо развили способность к дыханию, либо нашли экологические ниши, практически лишенные кислорода, и продолжили в них анаэробное существование. По всей вероятности, существовал и третий класс организмов, который выбрал значительно более хитрую и неизмеримо более богатую отлаленными последствиями стратегию выживания. Считается, что организмы этого класса вступили в симбиоз с аэробными клетками, а затем образовали с ними прочную ассоциацию. Это - наиболее привлекательное объяснение возникновения современных клеток эукариотического типа (схема 1-1), о которых в основном и пойдет речь в книге. [c.27]

    Переход от простой прокариотической к сложной эукариотической клетке с ее многообразными субструктурами остается до сих пор загадкой для биологов. Наиболее остроумная гипотеза возникновения эукариотической клетки принадлежит Саган [И]. Она предположила, что эукариотическая клетка возникла в результате симбиоза двух или более различных прокариотических клеток. В основе этой идеи лежит тот факт, что внутри прокариотических клеток нет мембран, способных заш итить всю клетку от токсических продуктов, образуюш ихся в процессе метаболизма. Важнейший из таких ядов — кислород, который выделялся уже у ранних фотосинтезируюш их организмов. Ведь кислород, образующийся при фотосинтезе в некоторых участках клетки, способен окислить многие вещества клетки и тем самым погубить ее. В эукариотических клетках фотосинтез происходит в хлоропластах, и благодаря мембранам кислород уходит из клетки, не причиняя ей вреда. У прокариотических фотосинтезирующих организмов защита от кислорода должна была развиться одновременно с развитием фотосинтеза. [c.154]

    Мы уже отмечали прокариотический характер генетической системы органелл, который особенно ярко выражен у хлоропластов, и упомршали о том, что он может быть обусловлен происхождением органелл от бактерий-эндо-симбионтов (симбиотическая гипотеза, см. гл. 1). В соответствии с этой гипотезой эукариотические клетки в начале своего эволюционного пути были примитивными организмами без митохондрий и хлоропластов, а затем вступили в тесный симбиоз с бактериями и приспособили их систему окислительного фосфорилирования для своих нужд. Так как митохондрии животных и растений очень сходны, полагают, что событие, приведшее к возникновению этих органелл, произошло на раннем этапе эволюции эукариотической клетки, еще до разделения линий животных и растений. Вероятно, позднее в результате отдельного эволюционного события клеткой были захвачены цианобактерии (будущие хлоропласты), что привело к возникновению первых растительных клеток (см. рис. 1-21). [c.67]


    Реконструирование отдельных стадий эволюционного процесса симбиогенеза. Возникновение ныне существующих симбиозов высших растений с микроорганизмами произошло в результате длительного и сложного эволюционного процесса. Воспроизведение природных симбиозов в лаборатории позволило бы понять механизмы возникновения и условия для формирования их заново в природе. [c.53]

    Физиология растений как самостоятельная наука возникла иа рубеже XVIII и XIX столетий, Она имеет долгую историю, богатую открытиями и событиями. Если возникновение физиологии растений как науки о жизненных процессах растений отнести ко времени открытия Дж. Пристли фотосинтеза в 1771 г., ее возраст превышает 200 лет. Формальной датой зарождения физиологии растений считают 1800 г., когда был издан пятитомный труд швейцарского ботаника Ж. Сенебье (1742—1809) Физиология растений . Он дал и название этой науке. За указанный период в физиологии растений произошли важнейшие открытия фотосинтеза и дыхания как основных преобразователей материи и энергии, способности бобовых и некоторых других видов к симбиозу с азотфиксирующими организмами, роли водного баланса растений и адаптации их к экстремальным почвенно-климатическим условиям, фотопериодизма — явления, обусловливающего переход растений от вегетативного развития к репродуктивному в зависимости от относительной продолжительности дня и ночи, эндогенных регуляторов— фитогормонов, являющихся медиаторами между генетической программой и ее реализацией в онтогенезе вида, реституции у растительных клеток, т. е, способности восстанавливать из отдельных свободноживущих вегетативных клеток целые растения, и др. [c.8]

    Нервная ткань располагает исключительно огромными компенсаторными возможностями благодаря наличию системы нейрон лейроглия. Между нейронами и разнообразными клетками нейроглии существует теснейшая метаболическая связь, образующая своеобразный, симбиоз , который обеспечивает специфические и притом важнейшие функции нервной ткани, а именно возникновение л проведение нервного импульса, фор-ми х ание и хранение долговременной памяти и т. д. [c.7]

    Из всего рассмотренного выше следует, что нормальное строение миелиновых мембран — необходимый фактор функционирования головного мозга. Миелин представляет собой уникальную, специфическую, надмолекулярную структуру нервной ткани. Эта своеобразная структура теснейшим образом связана не только морфологически и анатомически, но и метаболически с нейронами и нейроглией. При этом следует особо подчеркнуть, что наличие теснейшей связи, своеобразного симбиоза между нейронами и глией обеспечивает наиболее универсальное проявление деятельности нервной системы возникновение и проведение нервного импульса. Таким образом, благодаря наличию системы нейрон — нейроглия, нервная система располагает огромными компенсаторными возможностями, обеспечивающими необходимый уровень разнообразных биохимических процессов не только при различных функциональных, но даже и патологических состояниях организма. [c.129]

    Большой интерес представляет вопрос о возникновении хлоре-Пластов в клетке в процессе эволюции. Поскольку хлоропласты представляют собой отпоснтельпо независимое от ядра образование, способное к делению, росту, дифференциации, возникла гипотеза о том, что на заре эволюции хлоропласты, так же как митохондрии, представляли собой самостоятельные организмы (с. 26). Согласно этой гипотезе хлоропласты вознвгош в результате симбиоза какого-то авто-трофного микроорганизма, способного трансформировать энергию солнечного света, с гетеротрофной клеткой хозяина. В этой связи интересно, что в 1969 г. было показано, что изолированные клетки млекопитающих способны заглатывать путем фагоцитоза выделенные из листьев хлоропласты. Захваченные клетками хлоропласты выжн- [c.103]


Смотреть страницы где упоминается термин Возникновение симбиоза: [c.190]    [c.190]    [c.38]    [c.395]    [c.421]    [c.370]   
Смотреть главы в:

Эволюция биоэнергетических процессов -> Возникновение симбиоза

Эволюция биоэнергетических процессов -> Возникновение симбиоза




ПОИСК





Смотрите так же термины и статьи:

возникновение



© 2025 chem21.info Реклама на сайте