Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа неорганических комплексов

    Комплексных соединений известно значительно больше, чем всех других неорганических соединений. Многие из них широко распространены в природе, играют важную роль в биологических процессах. Достаточно упомянуть хелатные комплексы — гемоглобин крови (ком-плексообразователь Ре +) и хлорофилл зеленых растений (комплексооб-разователь Mg +). Комплексные соединения находят самое разнообразное практическое применение. Так, образование хелатных комплексов используется ири умягчении жесткой воды и растворении камней в почках важнейшую роль играют комплексные соединения в аналитической практике, производстве металлов и т. д. [c.113]


    Примерно в течение сорока лет с начала разработки теории валентности и до конца XIX в, как химики-неорганики, так и химики-органики испытывали потребность в развитии первоначальной теории валентности, которая оказалась совершенно недостаточной для объяснения химических свойств непрерывно возрастаюш его числа соединений в этих обеих важных областях химии. К концу века теория валентности была превраш,ена в эвристическую систему. Это шло по двум путям, направленным к одной цели один путь был удачно проложен Т иле в области органической химии, другой проходил через неорганическую химию и был освеш ен гением Вернера. Оба ученых в качестве отправной точки зрения исходили из соображений о природе органических соединений, но первый стремился истолковать свойство и строение многочисленной группы ненасыщенных соединений, а второй — строение неорганических комплексов. Оба преуспели в своих теоретических исследованиях. [c.313]

    Теоретические основы экстракции.- Экстракцией называется извлечение вещества из одной жидкой фазы в другую жидкую фазу. С водой не смешиваются малополярные органические жидкости (с низкой диэлектрической постоянной). Подавляющее большинство неорганических соединений, имея ионную природу, растворяется в них плохо. В водном растворе эти соединения диссоциируют на ионы, которые гидратируются молекулами воды. Переход соединения в органическую фазу становится возможным, если все или часть молекул воды, координированных ионом, будут удалены, и получен нейтральный комплекс. Образование нейтральных соединений и уменьшение степени гидратации наблюдается прн образовании солей с органическими кислотами, аминами (если металл входит в состав аниона), сольватов с нейтральными экстрагентами (спиртами, кетонами, простыми и сложными эфирами). При образовании сольватов молекулы экстрагента замещают молекулы воды в гидратной оболочке катиона либо присоединяются к воде гидратной оболочки. Такого рода взаимодействие возможно, если органические вещества содержат атомы кислорода, азота и других элементов, способных быть донорами электронов, а металлы — акцепторами. [c.332]

    Ирвинг, Россотти и Уильямс 2 рассмотрели экстракцию неорганических соединений в обобщенной форме. Они оценили влияние таких факторов, как агрегация ионов, сольватация, ступенчатое образование комплекса между ионом металла и неорганическими анионами или хелатообразующим реагентом, а также влияние иолимеризации в обеих фазах. Обобщенная трактовка полезна в качестве руководства при постановке экспериментов, направленных на определение природы частиц в обеих фазах. Так, определив константу распределения как функцию концентрации металла, можно найти разницу между Степенью ассоциации металла в двух фазах. [c.288]


    Природа неорганических комплексов [c.471]

    Подробно рассмотрено [15] окисление хромом (VI) неорганических веществ, и в частности — природа активированных комплексов и поведение промежуточных соединений. В результате сделан вывод, что восстановление Сг - -Сг или окисление Сг"" Сг является медленно протекающей стадией большого числа реакций. [c.357]

    Координационная теория Вернера дала единое объяснение существования неорганических комплексов. На основании этой теории, которая стала фундаментом химии комплексных соединений, можно объяснить многие свойства и стереохимию. Однако теория Вернера, предложенная за 20 лет до появления современных представлений об электронной структуре атома, не могла установить природу координационной связи. [c.97]

    Спектрофотометрическое определение индивидуальных редкоземельных элементов возможно в растворах, содержащих (в качестве посторонних ионов) в основном только неорганические анионы, поглощающие лишь в далекой УФ-области спектра, так как молярные коэффициенты погашения аква-комплексов редкоземельных элементов очень незначительны (табл. 13, 14) и присутствие посторонних компонентов может исказить результаты определения. Значения молярных коэффициентов погашения несколько меняются в зависимости от природы аниона (табл. 13). После выделения суммы редкоземельных элементов в виде окислов нх переводят чаще всего в хлориды, так как хлорид-ион поглощает в далекой УФ-области. Избыток соляной кислоты легко удаляется выпариванием раствора, при этом исключается возможность образования комплексов. [c.205]

    Атомы и ионы металлов способны образовывать химические связи с различными неорганическими (Н , N2, О2, СО, СО , Щ1з, N0 и др.) и органическими молекулами, атомами, ионами, радикалами с образованием как устойчивых, так и нестабильных соединений. Химические связи, возникающие в комплексах металлов, во многих случаях оказываются необычными по своей природе. Необычность природы химической связи лежит в особенности электронного строения комплексообразователя и лигандов, конфигурации комплекса, во влиянии стерических эффектов и т. д. [c.503]

    ИК-спектры. Представляло интерес изучить состояние катионов Си + в цеолитах, особенно тех, которые обладают высокой каталитической активностью в реакциях окисления, используя метод ИК-спектроскопии адсорбированных молекул. Известно, что на состояние адсорбированной молекулы существенно влияет центр адсорбции, поэтому, исследуя ИК-спектры адсорбированных молекул-тестов и их изменения, можно получать информацию о природе адсорбционных центров. В качестве молекул-тестов были выбраны молекулы СО и N0, имеющие характеристические ИК-полосы поглощения частоты валентных колебаний их, например в неорганических комплексах, существенным образом зависят от природы центрального атома и лигандного окружения [51—53]. [c.134]

    В природе и технике протекает огромное количество разнообразных химических процессов — начиная от простейших реакций веществ в лабораторных условиях и кончая сложнейшими процессами, протекающими в живых организмах. Вместе с тем число известных в настоящее время партнеров элементарных реакций сравнительно невелико. Это молекулы, свободные радикалы и атомы, ионы и комплексы различного химического состава и строения. Свойства этих частиц в основном и определяют особенности механизма и закономерности развития химических процессов. Именно этим обусловлена возможность создания общих теоретических основ химической кинетики, позволяющих с единой точки зрения рассматривать разнообразные процессы органической, неорганической и биологической химии. [c.3]

    Многие свойства полимеров (высокая вязкость растворов, растворение с предварительным набуханием, механические свойства, нелетучесть, неспособность переходить в парообразное состояние и т. д.) тесно связаны с большой энергией межмолекулярного взаимодействия. Именно резко возрастающая роль межмолекулярных сил является одной из важнейших особенностей полимеров, качественно отличающей их от низкомолекулярных соединений. Высокомолекулярные соединения широко распространены в природе — это животные и растительные белки, углеводы (целлюлоза и крахмал), натуральный каучук, смолы и др. С каждым годом растет число полимеров, создаваемых синтетически. Сегодня химия в состоянии не только воспроизводить многие природные полимеры, как, например, натуральный каучук, некоторые белки, но и создавать массу новых синтетических полимерных веществ, которых в природе не существует. В качестве примера можно привести элементорганические полимеры, которые обладают комплексом свойств, присущих как органическим, так и неорганическим полимерам. [c.327]

    Галогены и редокс-системы на их основе являются сильными окислителями. Следует заметить, что активность галогенов в степени окисления +1 зависит от природы исходной частицы. Из ал-кил(арил)-иодидов получаются более реакционноспособные частицы, нежели из неорганических иодидов. Это связано с образованием комплексов галогенид-ионов с ионами металлов фонового электролита. [c.535]


    Комплексующие анионы в зависимости от их природы и концентрации оказывают различное действие на характер спектра светопоглощения растворо в плутония [3, гл. 9]. В литературе имеется особенно много данных по влиянию концентраций неорганических кислот хлорной, соляной, азотной и серной на спектры светопоглощения растворов трех-, четырех- и шестивалентного плутония [3, 460—462, 493 П. Н. Палей и М. С. Милюкова, 1953 г. В. М. Тараканов, 1951 г.]. [c.151]

    Энгель [123] изучил природу кремнезема в соломе ржи и показал, что в ней присутствуют органические комплексы кремнезема. При обработке соломы горячей водой или метанолом после предварительной обработки смесью метанол—бензол из нее могли образовываться неустойчивые органические соединения кремнезема. Такие соединения легко превращаются в неорганические, нерастворимые полимеры 5102. Также было получено небольшое количество кремнийорганического, способного растворяться в простом эфире комплексного соединения, в котором, как нашел автор, присутствовала галактоза в соотношении 2 моль 5102 на 1 моль сахара. Невозможно было определить. [c.1030]

    В неорганическом люминесцентном анализе наиболее распространены методы с использованием органических реагентов. Здесь есть свои особенности, отличные от молекулярной абсорбционной спектроскопии. Основная из них — более резко выраженная зависимость спектральнолюминесцентных свойств комплекса металла от природы и взаимного расположения электронных уровней лиганда и иона металла-комплексо-образователя. [c.305]

    Характер изменения коэффициентов распределения с изменением атомното номера лантаноида зависит от природы неорганического аниона. Экстракция увеличивается с ростом 2 в случае роданидных комплексов [19, 20], уменьшается в случае нитратных 1[21] и очень мало меняется в -случае хлоридных 1[22]. Высказано предположение, что при извлечении комплексов с нитрат- и хлорид-ионами, обладающих малой способностью координироваться к лантаноидам, последние удерживают во внутренней координационной сфере молекулы воды ([16]. Поскольку с ростом 2 гидра- [c.299]

    Подробнее будут рассмотрены ароматические гетероциклы, роль которых в живой природе очень многообразна и важна, а также структурные ансамбли различных органических молекул — нуклеотидов, углеводов и их фосфорных эфиров, полипептидов и белков, природных макроциклических комплексов с Ре, М , Со, Мо и другими металлами, которые вместе с рядом других донорно-акцепторных молекул входят в структуру биологических аппаратов организма растений и животных и составляют предмет биоорга-ни 1еской химии — одной из важных составных частей биохимии и биологии. В этой области явлений химическая форма движения материи, лежащая в основе неорганической и органической материи, переходит в одну из высших форм движения — биологическую. [c.601]

    Как известно, природа растворителя оказывает существенное влияние на эффект Коттона, поскольку изменяется характер взаимодействия растворенного соединения с растворителем. Не меньшее значение имеет и температура раствора. Снижение температуры до —192 °С позволяет выявить сложную картину эффекта Когтона и установить наличие лабильных конформеров. Книга содержит краткую сводку последних данных в этой важной области исследований. Кроме того, подведен итог последних работ по применению методов дисперсии оптического вращения и кругового дихроизма к изучению строения оптически активных полимеров, неорганических комплексов, а также по применению магнитной дисперсии оптического вращения и магнитного кругового дихроизма. [c.7]

    Химическая природа окис.тшемого вещества не играет роли в образовании перекисей требуется только, чтобы вещество было способно к окислению. Связанные с группой —0—0— радикалы могут быть электроотрицательными, как в надсерпой кислоте, или электроположительными, как в перекиси натрия, могут быть органическими или неорганическими комплексами,—всегда перекиси могут уступить другим окисляемым веществам половину кислорода, соответствующего группе — О — О—. В общих чертах эту отдачу кислорода можно представить, по Энглеру , следующими схемами. [c.60]

    Каталитические процессы постоянно совершаются и в организмах животных и человека и все больше привлекают к себе внимание химиков, занимающихся катализом. Сущность этих процессов та же, что и в природе неорганической. Среди активных тел, помогающих органам живого организма нормально выполнять присущие ему функции, особое значение имеют различные ферменты, вырабатываемые эндокринными железами. Однако не всегда активность фермента достигает той степени, которая необходима для борьбы за жизнь. Таким образом, и ферменты для нормальной их деятельности нуждаются в катализаторах, усиливающих, а пе тормозящих их работу. Такая роль промоторов, можно думать, и присуща витаминам, самые незначительные количества которых, входя в комплекс с ферментом, временно повышают его ферментативную активность. Витамины представляют собой определенные по своему характеру и строению химические соединения, встречающиеся в продуктах растительной и животной природы (овощах, ягодах, плодах, жирах) некоторые витамины получаются теперь искусствепно. Селективное промотирующее действие каждого витамина проявляется только на определенном ферменте. Вот [c.185]

    Наиболее подробно изучено каталитическое действие я-аллильных комплексов никеля. Их стереоспецифичность определяется природой галогена, связанного с никелем иодиды приводят к транс-структурам, а хлориды способствуют образованию цис-звеньев [48]. Активность п-аллилникельгалогенидов резко возрастает при введении в систему неорганических или органических электроноакцепторов [49, 50]. Катализаторы, образующиеся при взаимодействии п-аллильных комплексов никеля с такими соединениями, как галогензамещенные хиноны, альдегиды, кетоны, кислоты и их соли, обладают высокой каталитической активностью [c.183]

    Основным объектом изучения в химии координационных соединений являются ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов (аддендов). Строго говоря, понятие комплексные соединения шире, чем понятие координационные соединения . Оно включает в себя также молекулярные комплексы, в которых невозможно указать центр координации, а также соединения включения. Тем не менее, координационные соединения часто называют просто комплексами, и мы тоже будем следовать этой традиции. Как правило, центральной частицей ( ядром координации) является катион металла или оксокатион типа 1)022+, д лигандами могут быть ионы либо молекулы неорганической, органической или элементоргани-ческой природы. Друг с другом лиганды либо не связаны и взаимно отталкиваются, либо соединены силами межмолекулярного притяжения типа водородной связи. Совокупность непосредственно связанных с ядром лигандов называют внутренней координационной сферой. [c.11]

    В целом комплексное соединение электронейтрально. Комплексный ион обладает большой устойчивостью, при диссоциации в растворе существует самостоятельно. Число лигандов, распо лагающихся вокруг комплексообразователя, называется коор динационным числом (КЧ). В нашем примере КЧ Ре + равно 6 Как мы увидим ниже, составными частями комплексных соеди нений могут быть не только ионы, но и нейтральные молекул1ы Например, №(СО)4 — тетракарбонил никеля — также комплекс ное соединение, где лигандами являются нейтральные молекулы СО. Обратите внимание, комплексообразователь — никель — также нейтральный атом. Комплексные соединения на сегодня представляют обширную группу химических соединений. Их известно значительно больше, чем всех других неорганических веществ. Они имеют исключительно большое значение в живой и неживой природе. [c.367]

    Циклодекстрины - макроциклические соединения полисахаридной природы, представляющие собой полимергомологический ряд с общей формулой ( HioOj),,. Структурной единицей макроциклов ЦД является а-D-глюкоза в пиранозной форме. Наиболее изучен второй гомолог ЦД с п = 7 - (5-циклодекстрин. Структурные глюкопиранозные единицы ЦД связаны между собой 1,4-связями и расположены симметрично вокруг центральной оси. Условные плоскости глюкопиранозных колец слегка наклонены относительно плоскости гликозидных кис-лородов, что позволяет рассматривать молекулу ЦД в виде слегка конического полого цилиндра. Внутренняя полость молекулы содержит гликозидные кислороды и водородные атомы, из-за чего имеет слегка гидрофобный характер. Эти свойства внутренней полости являются предпосылкой для создания комплекса с разными молекулами - "гостями" [27]. Способность ЦД образовывать комплексы включения со многими неорганическими и органическими веществами следует считать их основным характерным свойством. ЦД широко применяются в фармацевтической, пищевой промышленности. Включение ЦД в состав таблеток улучшает фармацевтические характеристики лекарственных средств. Это заключается в улучшении растворимости (простагландины, стероидные гормоны, барбитураты), стабилизации против гидролиза (аспирин, гликозиды), улучшении биодоступности (барбитураты, дигоксин, сульфонамиды), защиты слизистой желудка от повреждения (аспирин, индометацин), ингибировании гемолиза (антибиотики) и т.д. [28, 29, 30]. [c.501]

    В подобных случаях, т. е. когда вместо ожидаемого целевого продукта из реакционной смеси выделяют в небольшом количестве некую неожиданную примесь, все это выбрасывают, а синтез повторяют при более тщательной очистке исходных веществ и более строгом соблюдении необходимых для основной реакции условиях, не тратя время на изучение побочного продукта. Если бы Педерсен поступил традиционно (для чего бьни некоторые основания, так как вьщеленный побочный продукт не обладал способностью комплексовать ион VO3), то он, вероятно, больше никогда не получил бы шанса отправиться в Стокгольм за Нобелевской премией, которая была присуждена ему (совместно с Дональдом Крамом и Жаном-Мари Леном) в 1987 г. за открьггие макроциклических полиэфиров типа 214 и другкх комплексонов. К счастью для Педерсена (и для мировой науки ) от его внимания не ускользнули необычные особенности поведения этого соединения. Так, сам 214 очень мало растворим в метаноле, но его растворимость резко возрастает в присутствии едкого натра. Дальнейшие эксперименты показали, что такой эффект независим от основности неорганического реагента и наблюдается для многих натриевых солей, так же как и для солей ряда других неорганических катионов [32Ь,с], Еще более интригующим был тот факт, что неорганические соли, практически не растворимые в неполярных органических растворителях, становятся заметно растворимыми в них в присутствии макроциклического полиэфира 214. Эти наблюдения побудили Педерсона выдвинуть блестящую гипотезу, объясняющую природу этих явлений. Он предположил, что наличие полости в центре макроциклической полиэфирной системы обусловливает способность таких соединений, и, в частности, 214, поглощать неорганический катион, размер которого соответствует размеру [c.466]

    Поскольку реакция включает взаимодействие ароматического углеводорода с протоном, степень протекания реакции может служить непосредственной мерой основности углеводорода. Бензол является слишком слабым донором электронов, чтобы действовать в качестве эффективного ст-о онования, но ксилолы и более вьгсокоалкилированные бензолы при распределении их между н-гептаном и жидким фтористым водородом в присутствии соответствующего количества фтористого бора образуют комплексы, которые переходят в неорганический слой. Так как стабильность а-комплекса изменяется в зависимости от природы, числа и расположения алкильных групп, возможно разделение смеси углеводородов фракционной экстраицией. Если три изомерных ксилола обработать ограниченным количеством фтористого бора в присутствии избытка фтористого водорода, то л1-ксилол, как наиболее сильное основание, извлекается в первую очередь, а п-ксилол — в последнюю. [c.135]

    Матиевич [51] обсудил возможность применения теории ДЛФО к различным неорганическим золям. Для кремнеземных золей наиболее важным фактором является природа электролита. Процесс адсорбции и образования стабильных комплексов, на поверхности кремнезема настолько сильно влияет на катионы, что упомянутая теория в данном случае имеет небольшое практическое значение. К тем же самым выводам пришли авторы работы [52] в отношении коллоидной системы, содержащей частицы ТЮг. [c.438]

    Измерены константы комплексообразования (константы устойчивости) для ряда комбинаций краун-эфир - неорганическая соль - растворитель посредством УФ-спектроскопии, калориметрии, с помошью ионоселективных электродов и другими способами. Наблюдалось четкое соответствие.между константой комплексообразования и диаметром катиона, т.е. максимальное значение константы комплексообразования соответствует катиону, диаметр которого наиболее близок размеру полости краун-зфира. Получены данные по термодинамике, а недавно стало возможным с помошью ЯМР-спектроскопии на ядрах Н, Li, Na, 39[( и 3(]д измерить и кинетические параметры, такие, как константы комплексообразования или константы диссоциации. Как отмечалось ранее, комплексы краун-э4мров с катионами становятся растворимыми даже в неполярных органических растворителях благодаря гидрофобной природе органических фрагментов, расположенных по внешней стороне полиэфирного кольца. В этих [c.97]

    Люминесценцию, в формировании спектра излучения которой принимают участие электронные уровни иона металла-комплексообразователя, назьшают собственной. Таким свечением обладают и соединения ура-нил-иона (рис. 11.58). Независимо от природы лиганда (неорганические, органические) в спектре излучения его комплексов (450—650 нм) наблюдается несколько характерных полос. Лиганд оказывает влияние только на соотношение их интенсивностей. Подобрав подходящую длину волны регистрации излучения, можно добиться высокой селективности. Большие значения квантовых входов люминесценции соединений уранил-иона (часто ф ) и достаточно интенсивное поглощение в области 200— 300 нм дают возможность определять до и 10 мкг/мл урана. Для ощзеделения урана гфименяют люминесценцию растворов в КазРзО,, НР, Н3РО4 и Н ЗО . [c.307]

    Участие в создании органической природы. Вопрос о месте формальдегида в развитии растительного мира давно привлекает внимание ученых. Легко видеть, что наряду с метаном, метанолом, циановодородом и муравьиной кислотой формальдегид относится к числу наиболее простых, можно сказать элементарных органических соединений. Большинство других простейших соединений, встречающихся в природе, таких, как оксид и диоксид углерода, вода, аммиак и т. п. относится уже к сфере неорганической химии, (различными исследователями доказана возможность образования формальдегида в условиях, близких к природным. Так, зарегистрировано образование формальдегида при фотохимическом окислении метана или метанола, при атмосферном давлении и в отсутствие катализаторов [1]. Термодинамически возможно получение формальдегида гидрированием оксида и диоксида углерода. Хорошо известно, что гидрирование легко протекает в присутствии металлов, распространенных в земной коре, — хрома, меди и т. д. С этой точки зрения, весьма Интересно наблюдение, сделанное недавно в Ленинградском университете Корольковым и Щукаревым [2]. Этим исследователям удалось показать, что образование формальдегида происходит и при взаимодействии оксида углерода (II) с водой, под влиянием оксидов молибдена, точнее, биядерных комплексов, в состав которых входит катион Mo202(H20)s +. Окислительно-восстановительное превращение оксида углерода (II) протекает в две стадии. Вначале образуется гидридный кластерный комплекс ((Нг) и диоксид углерода [c.7]

    Факторы, обусловливающие гетерогенный характер серной вулканизации каучуков общего назначения, в полной мере проявляют себя и при вулканизации их другими (несерными) вулканизующими системами. Действительно, больщинство вулканизующих агентов для диеновых и олефиновых каучуков является полярными веществами (например, галогенсодержащие соединения, аминные комплексы хлорборанов, азодикарбонамид и т. д.) и плохо растворяются в каучуке. Многие вулканизационные процессы активируются оксидами металлов (вулканизация галогенсодержащими соединениями, дисульфидами и т. д.), неорганическими солями (вулканизация смолами) и другими нерастворимыми в каучуке веществами кинетика процесса и характер возникающих вулканизационных структур зависят от природы оксидов, поверхности наполнителя и т. д. [c.268]

    В отличие от небиологических катализаторов ферменты — высоко специфичны, они имеют активные центры, многие из них проявляют свою активность в присутствии коферментов (коэнзи-мов) небелковой природы, то есть в таких случаях ферменты являются сложными белками К сожалению, до сих пор нет достаточной четкости в определениях коферментов и кофакторов Одни авторы отождествляют эти понятия, другие используют лишь один термин — коферменты, третьи выделяют ионы некоторых металлов в разряд активаторов, прямо не связывая их с кофермен-тами, и т д Накопленный фактический материал служит веским основанием подразделять белки-ферменты на две группы — простые ферментные белки и сложные ферментные белки, из которых сложные содержат в своем составе неорганические и/или органические небелковые структуры — коферменты Коферменты могут обратимо или необратимо (простетические группы) связываться с белковой частью — апоферментом Полный ферментный комплекс называют холоферментом Если же действие некоторых ферментов лишь активируется неорганическими ионами или атомами металлов и не снимается полностью в их отсутствии, то такие активаторы следует называть кофакторами [c.62]

    Введение. Для химика в первую очередь необходимо знать спектры простых многоатомных катионов и анионов (например, NH , O , N" и т. д.), поскольку они часто присутствуют в комплексах либо сами по себе, либо в качестве лигандов. Наиболее подробная сводка таких данных составлена Миллерим и Уилкинсом [133]. В этой работе приведены спектры в области призмы из каменной соли для 159 неорганических соединений, главным образом солей, содержащих многоатомные ионы. Приведенные спектры были сняты в суспензиях в нуйоле. Опубликована также сводка спектров 64 минералов, встречающихся в природе, и родственных неорганических соединений [89]. Обзор характерных полос поглощения многоатомных ионов и ссылки на более старые работы можно найти в книге Беллами [7]. [c.305]

    Современному пониманию природы комплексов мы обязаны остроумному представлению, развитому Альфре- , дом Вернером, профессором химии в Цюрихе, лауреатом N Нобелевской премии 1913 г. В 1893 г., в возрасте всего о лишь 26 лет, он предложил теорию, которую теперь обычно т5- называют координационной теорией Вернера, ставшую ведущей в неорганической химии и в учении о валентности. Три наиболее важных положения этой теории следующие  [c.17]


Смотреть страницы где упоминается термин Природа неорганических комплексов: [c.290]    [c.290]    [c.37]    [c.171]    [c.94]    [c.298]    [c.71]    [c.71]    [c.228]    [c.56]    [c.450]   
Смотреть главы в:

Химия -> Природа неорганических комплексов

Общая химия  -> Природа неорганических комплексов




ПОИСК





Смотрите так же термины и статьи:

Комплексы неорганические



© 2025 chem21.info Реклама на сайте