Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЭЛЕКТРОХИМИЯ ГАЛЛИЯ

    Деление Электродов по агрегатному состоянию на жидкие и твердые, хотя и кажется на первый взгляд примитивным, в действительности отражает глубокие специфические, отличия ъ методике работы, характере изучаемых закономерностей и областях применения. Среди жидких электродов как в фундаментальной электрохимии, так и на практике наибольшее распространение получил ртутный электрод. Одной из причин широкого использования ртутного электрода при электрохимических исследованиях служит легкость очистки ртути и возможность изготовления капающего электрода с возобновляемой поверхностью. На капельном электроде с небольшим периодом жизни капли примеси, всегда присутствующие в том или ином количестве даже после тщательной очистки раствора, не успевают накапливаться и не искажают результаты измерений, тогда как при работе на стационарных электродах достижение необходимой степени очистки растворов часто оказывается чрезвычайно сложной задачей. Примерами других жидких электродов служат жидкий галлий (т, пл. галлия 29,8 °С), растворы металлов в [c.15]


    Из сказанного следует, что получение проводящего алмаза для электродов — больной вопрос в электрохимии алмаза. Даже у лучшего из допантов — бора — слишком высокая энергия ионизации (для легирования кремния, арсенида галлия и других технологически продвинутых полупроводников используют донорные и акцепторные примеси с энергией ионизации порядка 0,01 эВ при комнатной температуре они полностью ионизированы). [c.12]

    Главным объектом электрохимии полупроводников до сих пор остается германий. Значительно менее подробно исследованы кремний, сульфид кадмия, окись цинка, арсенид галлия. В последние годы внимание исследователей привлекают окись никеля, фосфид галлия и некоторые другие материалы. [c.12]

    Среди сравнительно новых объектов исследования электрохимии полупроводников можно назвать бинарные полупроводниковые материалы двуокись титана 477, 78], танталат калия [791, селенид и теллурид кадмия [80], окись никеля [81, 82]. Параллельно продолжалось дальнейшее исследование окиси цинка [83—86], сульфида кадмия [87, 88], арсенида и фосфида галлия [89, 90]. [c.19]

    Методы осаждения классических гальванических покрытий на металлах из растворов электролитов под действием электрического тока рассматриваются в общеизвестных курсах прикладной электрохимии [57, 58] и подробно описаны в справочниках. Отметим, что из водных растворов электрохимическим методом осаждают на металлические поверхности следующие металлы никель, железо, кобальт, хром, медь, цинк, кадмий, олово, свинец, серебро, золото, платину, родий, палладий, рутений, иридий, индий, галлий. При этом имеет силу принцип избирательности. Нередко требуется от-носит ьно сложная подготовка поверхности, включающая выбор третьего металла в качестве подслоя. Неметаллические же поверхности предварительно металлизируют или графитируют. [c.54]

    Задачи, которые решает электрохимия в настоящее время, заключаются в раскрытии механизма относительно сложных процессов. Решение этих вопросов связано с большими трудностями и часто приходится через много лет возвращаться к одному и тому же процессу, пересматривая полученные результаты. Таким примером может быть выделение водорода из щелочных растворов, которое имеет место при практическом электролизе воды. В первые годы развития теории замедленного разряда считали, и это, казалось, подтверждалось первыми работами, выполненными с никелевым электродом, что медленной стадией в этом процессе является присоединение электрона к молекуле воды. Однако результаты по никелю вызывали ряд сомнений. В настоящее время можно утверждать, что процесс идет именно так, лишь в случае выделения водорода на электроде из жидкого галлия, как это было доказано И. А. Багоцкой. Оказалось, что в ультрачистых растворах на ртутном катоде этот процесс идет не по электрохимическому механизму, а так, как это представляли себе до рождения электрохимической кинетики. Тогда предполагали, что ион щелочного металла, например натрия, разряжается на катоде, образуя соответствующую амальгаму, которая затем реагирует химически (т. е. без разделения на катодный и анодный процессы) с водой, выделяя водород. [c.14]


    По функциям в электрохим. системе Э. подразделяют на рабочие, вспомогательные и электроды сравнения. Рабочим наз. Э., на к-ром происходит исследуемый электрохим. процесс. Вспомогат. Э. (или противоэлектрод) обеспечивает возможность пропускания тока через электрохим. ячейку, а Э. сравнения - возможность измерения потенциала рабочего Э. Специфика широко используемых в электрохимии жидких Э. (ртугь, амальгамы, галлий, жвдкие сплавы на основе Са -галламы, расплавы металлов и т.п.) связана с вдеальной гладкостью их пов-сти, истинная площадь к-рой совпадает с ее геом. величиной, а также с энергетич. однородностью и [c.425]

    Итак, мы видим, что умеренно легированные алмазные электроды ведут себя почти идеально в растворах индифферентного электролита, давая линейные графики Мотга— Шоттки, показывая ожидаемые фотоэлектрохимические свойства (см. ниже, глава 9) и т. д., что указывает на закрепление границ энергетических зон на поверхности полупроводника. В то же время в растворах окислительно-восстановительных систем границы энергетических зон на поверхности как бы открепляются , и алмаз демонстрирует электродное поведение, характерное для плохого металла. Это явление еще не на-щло адекватного объяснения, но оно наблюдается на многочисленных полупроводниковых электродах (из германия, кремния, арсенида галлия и др.) [124, 179]. По всей вероятности, изменение степени окисленности поверхности электрода под влиянием растворенного вещества меняет скачок потенциала в слое Гельмгольца, что в терминах электрохимии полупроводников трактуется, как открепление границ энергетических зон на поверхности. [c.58]

    Растворение металлов можно в таких случаях вызвать, используя известные положения электрохимии. Например, очень чистые металлы можно растворить, создавая гальванические пары, т. е. соприкасая эти металлы с такими металлами, как платина или медь. Можно также осадить более благородный металл непосредственно на поверхности растворяемого металла, прибавляя соответствующую соль. Очень чистый алюминий (а также и галлий) растворяется, если опустить в кислоту платиновую крышку так, чтобы она прикоснулась к растворяемому металлу, и прибавить окислитель. [c.651]


Библиография для ЭЛЕКТРОХИМИЯ ГАЛЛИЯ: [c.174]   
Смотреть страницы где упоминается термин ЭЛЕКТРОХИМИЯ ГАЛЛИЯ: [c.115]    [c.46]    [c.253]    [c.250]    [c.266]    [c.6]    [c.35]    [c.10]    [c.265]   
Смотреть главы в:

Электроосаждение металлов и ингибирующая адсорбция -> ЭЛЕКТРОХИМИЯ ГАЛЛИЯ




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы

Электрохимия



© 2025 chem21.info Реклама на сайте