Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение теория замедленности стадии разряда

    В настоящее время наибольшее признание получила теория замедленного разряда, согласно которой лимитирующей стадией является стадия присоединения электрона к реагирующей частице. Основные положения и кинетические уравнения этой теории совпадают с теорией перенапряжения перехода. В применении к электродной реакции HjO"" + е"Н + НзО уравнение (184.17) принимает вид [c.512]


    Предположения о замедленности и решающем значении той или иной стадии привели к созданию различных теорий перенапряжения водорода. Чаще считают, что скорость всего процесса определяется скоростями разряда и отвода водорода. Для металлов с малым перенапряжением (Р1, N1) более справедливы представления о замедленности стадии отвода водорода путем рекомбинации, а для металлов с большим перенапряжением (Hg, РЬ) — о замедленности стадии разряда. [c.330]

    В настоящее время наиболее признанной теорией перенапряжения водорода является теория замедленного разряда. Согласно этой теории замедленной стадией, определяющей ско- [c.336]

    Теория, объясняющая зависимость тока от потенциала электрода или перенапряжения при замедленной стадии переноса электрона, носит название теории замедленного разряда. Предполагается, что стадией, определяющей скорость реакции, является перенос электронов. Выражения для скорости катодного и анодного процессов имеют вид  [c.17]

    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]

    Общая (суммарная) скорость таких сложных процессов определяется в основном скоростью наиболее медленной стадии. Так, для водорода рассматриваются главным образом первые две из указанных стадий . По одним теориям, перенапряжение обусловливается главным образом процессом разрядки ионов. Это направление получило развитие, в частности, в работах А. Н. Фрумкина с сотрудниками в его теории замедленного разряда. По другим — перенапряжение связывается с образованием молекул Нг из атомов. [c.453]


    Общая характеристика процесса (348), 2. Зависимость перенапряжения водорода от плотности тока и материала электрода (350), 3. Влияние природы и состава раствора на водородное перенапряжение (353), 4. Влияние температуры и некоторых других факторов на перенапряжение водорода (355), 5. Возможные стадии процесса катодного выделения водорода (357), 6. Теория замедленного разряда водородных ионов (359), 7. Теория замедленной рекомбинации водородных атомов (363), 8. Теория замедленной электрохимической десорбции (366), 9. Возможные пути катодного выделения водорода (368), 10. Критерий справедливости теории водородного перенапряжения (370), 11. Природа водородного перенапряжения на различных металлах [c.507]

    Влияние природы металла на перенапряжение представляет собой сложный вопрос, не всегда решающийся теорией замедленного разряда. Иногда целесообразно рассматривать в качестве лимитирующих другие стадии процесса выделения водорода. В настоящее время предполагается, что для Hg, Т1, РЬ, Zn, Sn, d и др. перенапряжение определяется медленно протекающей стадией разряда. Удаление адсорбированного водорода происходит за счет быстрой стадии электрохимической десорбции. На металлах группы платины и, возможно, железа наиболее медленной стадией является стадия рекомбинации атомов и молекулу. При этом перенапряжение соответствует перенапряжению реакции и описывается уравнением (185.1). [c.513]

    Электрохимическая поляризация (перенапряжение). Изменение потенциала, обусловленное замедленностью собственно электрохимических стадий реакций, называется электрохимической поляризацией (перенапряжением). Крупный вклад в разработку теории замедленности электрохимической стадии разряда (теории замед- [c.198]

    Электрохимическая поляризация (перенапряжение). Изменение потенциала, обусловленное замедленностью собственно электрохимических стадий реакций, называется электрохимической поляризацией (перенапряжением). Крупный вклад в разработку теории замедленности электрохимической стадии разряда (теории замедленного разряда) внес советский ученый А. Н. Фрумкин. Замедленность электрохимических стадий объясняется существенной перестройкой структуры реагирующих частиц в ходе реакции. Как и при химической реакции, электрохимические процессы происходят лишь тогда, когда реагирующие частицы обладают энергией, которая больше или равна энергии активации. [c.205]

    Теория замедленного разряда ионов в последнее время получила широкое признание. По этой теории наиболее медленной стадией сложного электрохимического процесса является процесс разряда ионов. Теория замедленного разряда, предложенная Фольмером, не учитывала строения границы электрод—раствор, поэтому не могла объяснить влияния состава электролита на величину водородного перенапряжения. Это направление получило развитие в работах А. Н. Фрумкина, который показал, что, с одной стороны, силы электростатического взаимодействия между электродом и ионами вызывают изменение концентрации реагирующих веществ в зоне реакции, а с другой — наличие двойного слоя сказывается на величине энергии активации электродного процесса. [c.357]

    ТАФЕЛЯ УРАВНЕНИЕ, осн. соотношение электрохимической кинетики. Связывает перенапряжение электродного процесса т) (сдвиг потенциала электрода по отношению к его равновесному значению см. Поляризация) с плотностью тока /, протекающего через границу электрод j р-р T = a + blgi (а и 6-эмпирич. постоянные). Установлено Ю. Тафелем опытным путем в 1905 применительно к электрохим. р-ции 2НзО -Ь 2е = Н -Ь 2Н2О, при этом использовались электроды из разл. металлов. Пытаясь дать теоретич. обоснование ур-нию, Тафель предположил, что за обратимой стадией разряда HjO" -Ь е ii Н , -Ь Н О следует лимитирующая (замедленная) стадия рекомбинации адсорбированных на электроде атомов водорода 2Н д - . В дальнейшем, однако, было показано, что приведенное Т. у. является частным случаем более общего ур-ния, связывающего значения и г в рамках теории замедленного разряда. Эмпирич. постоянная а оказывается связанной с кинетич. параметром стадии разряда-коэф. переноса а (O a l), а постояш ая Ь-с током обмена i(, а= — (i T/anF)ln/o b = 2,3RT/anF, где л-число электронов, участвующих в стадии разряда, F-постоянная Фарадея. [c.501]

    Советской школой электрохимиков во главе с А. Н. Фрумкиным развита и экспериментально обоснована теория перенапряжения, согласно которой наиболее медленной стадией является электрохимическая (I). Эта теория, получившая название теории замедленного разряда, имеет более общее значение и стала основой современных представлений о кинетике электродных процессов. Это обусловлено прежде всего тем, что она доказана экспериментально точными опытами, в которых непосредственно определялась скорость разряда ионов водорода. До этих опытов существовало мнение, что процесс разряда ионов происходит практически мгновенно. [c.268]


    Кинетика разряда водорода зависит от суммарного торможения процесса на отдельных его стадиях. В зависимости от природы материала катода и других условий доля торможения, приходящаяся на ту или другую стадию процесса, может быть различной. При этом одна из них обычно получает доминирующее значение. Теория замедленного разряда А. Н. Фрумкина приводит к следующему уравнению для перенапряжения водорода  [c.210]

    Если причина водородного перенапряжения заключается в замедленной стадии молизации, то металлы, поглощающие водород (Р1, Рс1, Ре, N1, Со, Та и др.), должны обладать наименьшим перенапряжением. Это справедливо, если сопоставить металлы железной группы, легко поглощающие водород, со ртутью или цинком, на которых перенапряжение значительно выше. Однако это не оправдывается для тантала. Тантал поглощает водород в значительно больших количествах, чем металлы железной группы, в то же время перенапряжение для разряда ионов водорода на нем очень велико. Экспериментальные данные показывают, что Т)Н2 зависит от pH раствора, присутствия посторонних ионов, диффузности двойного слоя, содержания в электролите поверхностно активных веществ. Все эти факторы изменяют величину константы а. Однако рекомбинационная теория не объясняет этих явлений. [c.349]

    Академиком А. И. Фрумкиным и его школой была разработана теория перенапряжения водорода, основанная на утверждении, что в процессе электрохимического выделения водорода замедленной стадией является разряд гидратированного иона водорода (иона гидрок-сония). [c.276]

    Точная природа перенапряжения не известна, однако было предложено много различных теорий для объяснения этого явления. Например, перенапряжение водорода пытались объяснить образованием гидридов, приводящих к возникновению противодействующей электродвижущей силы. Перенапряжение объясняли также наличием высокой концентрации атомного водорода у поверхности катода. Водород отдает свой электрон катоду, создавая, таким образом, противодействующую электродвижущую силу. Другие теории основаны на предположении, что замедленной стадией является разряд ионов водорода и что переход протона из раствора к электроду требует определенной энергии [4]. Катодами, на которых перенапряжение особенно велико, являются металлы с низкой температурой плавления, например ртуть. [c.315]

    Другой теорией, объясняющей причину перенапряжения, является теория замедленного разряда ионов, в основу которой положено предположение, что наиболее медленная стадия процесса — разряд иона водорода. Остальные процессы протекают мгновенно и не требуют дополнительных затрат энергии.- Если учитывать также строение двойного электрического слоя, то такая теория будет наиболее полно отражать закономерности, наблюдающиеся на опыте. [c.87]

    Некоторые исследователи [34] придерживаются в вопросе водородного перенапряжения иных взглядов. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации, т. е. образование из двух разрядившихся атомов водорода молекулы. Отсюда эта теория водородного перенапряжения получила название рекомбинационной. [c.16]

    Последнее уравнение характеризует, с одной стороны, зависимость перенапряжения от плотности тока, а с другой,— указывает посредством постоянной а, насколько легко протекает на данном катоде реакция восстановления кислорода или водорода. В самом деле, при плотности тока, равной единице, перенапряжение Т1 оказывается равным константе а, характеризующей электрохимические свойства материала катода. Константа Ь по идее не должна зависеть от материала катода, а определяется лишь механизмом реакции. Если исходить из теории замедленного разряда, допускающей, что наиболее медленной стадией в суммарном процессе является присоединение к реагирующей частице (ион водорода или молекула кислорода) одного электрона (п = 1), то [c.25]

    Наклоны Ь (см. табл. 44 и рис. 74), найденные при экспериментальном изучении выделения кислорода из кислых растворов на свинцовых анодах и из щелочных растворов на никеле, совпадают с величиной Ь = 2 (0,12 при комнатной температуре). Можно предположить поэтому, что кинетика всего процесса определяется скоростью чисто электрохимических стадий разрядом молекул воды в кислых растворах и разрядом гидроксильных ионов в щелочных. С теорией замедленного разряда Фрумкина согласуется также и характер влияния состава раствора на перенапряжение кислорода в рассматриваемых двух случаях. [c.388]

    Однако необходимо иметь в виду, что все эти заключения имеют лишь предположительный характер. Величину наклона Ь нельзя считать достаточным критерием для окончательного выбора между различными механизмами. Кроме того, в случае такого сложного процесса, каким является выделение кислорода, почти всегда имеется возможность для параллельного протекания нескольких стадий с близкими по величине константами скоростей. Так, опытные данные по выделению кислорода на свинце лучше всего согласуются с теорией замедленного разряда, однако не исключена возможность замедленного протекания стадии рекомбинации кислородных атомов. На это указывают, во-первых, изменение с плотностью тока содержания атомарного кислорода на поверхности свинцового электрода и, во-вторых, изменение скорости диффузии кислородных атомов через двуокись свинца. Другой стадией, параллельной с разрядом гидроксильных ионов и выделением кислорода, является образование окислов, состав которых зависит от плотности тока и потенциала электрода. Таким образом, создание теории кислородного перенапряжения немыслимо без учета реакций окисления поверхности анода. Образование окислов на аноде резко изменяет кинетику выделения кислорода и величину кислородного перенапряжения. Величина перенапряжения кислорода не только изменяется в широких пределах при переходе от чистой поверхности металла к окисленной, но и определяется природой самих окислов. Так, из данных табл. 44 следует, что переход от а- к -модификации двуокиси свинца уменьшает тафелевскую константу а более чем [c.389]

    Электрохимическое перенапряжение обусловлено замедленным протеканием стадии переноса заряда, т. е. стадии разряда или ионизации частиц. Поэтому в литературе для характеристики явлений, связанных с электрохимическим перенапряжением, как уже указывалось, широко используются термины замедленный разряд или замедленная ионизация . Теория процессов, скорость которых определяется переносом заряда, также часто называется теорией замедленного разряда . Термины электрохимическое перенапряжение , замедленный разряд и перенапряжение переноса заряда употребляются как синонимы. Однако сущность собственно электрохимической стадии не сводится ни к простому изменению заряда частиц (акт разряда), ни к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона означает одновременно изменение ее физико-химического и энергетического состояния. Так, например, находящийся в растворе ион водорода, получив электрон от электрода, превращается из сольватированного протона в адсорбированный электродом атом водорода [c.315]

    Однако необходимо иметь в виду, что все эти заключения имеют предположительный характер. Величину наклона Ь нельзя считать достаточным критерием для окончательного выбора механизма. Кроме того, в случае такого сложного процесса, каким является электрохимическое выделение кислорода, почти всегда имеется возможность для параллельного протекания нескольких стадий с близкими по величине константами скоростей. Так, опытные данные по выделению кислорода на свинце лучше всего согласуются с теорией замедленного разряда, однако не исключена возможность замедленного протекания стадии рекомбинации кислородных атомов. На это указывают, во-первых, изменение с плотностью тока содержания атомарного кислорода на поверхности свинцового электрода и, во-вторых, изменение скорости диффузии кислородных атомов через двуокись свинца. Другой стадией, параллельной с разрядом гидроксильных ионов и выделением кислорода, является образование окислов, состав которых зависит от плотности тока и потенциала электрода. Таким образом, создание теории кислородного перенапряжения немыслимо без учета реакций окисления поверхности анода. Образование окислов на аноде резко изменяет кинетику выделения кислорода и величину кислородного [c.389]

    Можно предположить поэтому, что кинетика всего процесса определяется скоростью чисто электрохимических стадий разрядом молекул воды в кислых растворах и разрядом гидроксильных ионов в щелочных. С теорией замедленного разряда Фрумкина согласуется также и характер влияния состава раствора на перенапряжение кислорода в рассматриваемых двух случаях. [c.456]

    Однако высказывалось мнение, что поляризация при электроосаждении, например, никеля не может быть полностью сведена к замедленности стадии разряда [173, 174], а в зависимости от условий частично связана и с трудностью образования и роста зародышей. Так, недавно было показано [175], что на пассивной поверхности образование зародышей железа является самой медленной стадией и требует перенапряжения свыше 1,5 в. Было исследовано электролитическое выделение кристаллических зародышех железа на пассивном платиновом сферическом монокристалле из буферного раствора 1,5 Л Ре804 + 1 А А12(804)з. Метод заключался в наложении импульсов напряжения от 1,5 до 2,4 в, длительностью от 20 до 40 мсек, в последующем проявлении образовавшихся во время импульса зародышей путем наложения малой катодной поляризации и подсчете получившихся кристалликов железа. Современная теория флуктуаций позволяет в этом случае вычислить скорость образования зародышей [см. уравнение (35)]. Опыт дал приблизительное подтверждение уравнения (35) (падением потенциала в растворе, обусловленным протеканием тока из-за сопутствующего процесса — выделения водорода в режиме предельного тока, по-видимому, в данных условиях авторы могли пренебречь, хотя фактическое сопротивление раствора около электрода диаметром 0,5 мм по расчету было не меньше 50 ом). В этой же работе, однако, было показано, что на незанас-сивированной поверхности платинового монокристалла образование зародышей кристаллов железа не является ста- [c.94]

    Наряду с замедленностью стадии разряда, в случае электродов с низким перенапряжением, нун но учитывать и медленность других стадий, в первую очередь диффузии молекулярного водорода в растворе, а также образования молекул из атомов водорода. Наблюдаемое при выделении молекулярного водорода перенапряжение в этом случае складывается из нескольких слагаемых, относящихся к различным стадиям процесса. Так, для платины в щелочном растворе зависимость плотности тока I от потенциала можно выразить в количественном согласии с теорией за-медленпого разряда одним общим уравнением для катодной и анодной ветвей, если наблюденное перенапряжение исправить на концентрационную поляризацию ( кояц)  [c.30]

    Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) иридерживаются в вопросе водородного перенапряжения иных взглядоь. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации,т. е. пятая стадия процесса. Эта теория водородного перенапряження, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них водорода и каталитической их активностью но отношению реакции рекомбинации водородных атомов. [c.41]

    В ряде электрохимических реакций с участием органических веществ скорость процесса определяется стадией разряда — ионизации. Особенности таких реакций, протекающих, как правило, на электродах с высоким перенапряжением водорода, изучены наиболее подробно (А. Б. Эршлер, Г. А. Тедорадзе). В соответствии с теорией замедленного разряда для скорости электровосстанов- [c.381]

    При образовании на электродах газообразных продуктов возникает перенапряжение, вызванное образованием новой фазы —пузырьков газа. Это перенапряжение относительно невелико (порядка 70—100 мВ), но в ряде случаев именно газообразование может оказаться стадией, лимитирующей суммарный электродный процесс (например, при образовании пузырьков водорода на платинированной платине или палладиевой черни). А. И. Фрумкин еще в 1933 г. сделал вывод о зависимости скорости разряда — ионизации газообразных продуктов — от строения двойного электрического слоя. Согласно уравнениям теории замедленного разряда, эта скорость обусловлена 1) влиянием фгпотенциа-ла на концентрацию реагирующих ионов в двойном слое и 2) влиянием згпотенциала на энергию активации электродного процесса. [c.209]

    Несмотря на большое число исследований по водородному перенапряжению, только в отдельных случаях можно сделать более или менее однозначные заключения о его природе, используя сформулированные выше критерии. Так, более или менее уверенно можно утверждать, что на ртути водород выделяется по механизму Фольмера — Гейровского. Это подтверждается данньши емкостных и электрокапиллярных измерений, из которых следует, что в широких интервалах потенциалов на поверхности ртути почти нет адсорбированного водорода. В согласии с критерием 1 это указывает на замедленность протекания разряда. Вместе с тем при малой концентрации водорода на поверхности ртути его удаление должно совершаться более эффективно путем электрохимической десорбции, а не рекомбинации. Величина предлогарифмического коэффициента Ь на ртути при комнатной температуре равна 0,П—0,12, что при учете ничтожного заполнения поверхности ртутного катода адсорбированным водородом можно согласовать лишь с теорией замедленного разряда [см. критерий 2]. Для ртутного катода нет данных, позволяющих рассчитать величину стехиометрического числа V, поэтому критерий 3 здесь использовать не удается. Вся совокупность опытных данных о влиянии состава раствора и величины pH на водородное перенапряжение на ртути очень хорошо согласуется с теми следствиями, которые вытекают из теории замедленного разряда Фрумкина, если принять, что а = 0,5. Их нельзя объяснить на основе предположения о замедленности какой-либо другой стадии. [c.374]

    Величина коэффициента Ь при выделении водорода на платине по наиболее точным измерениям составляет около 0,03, что также нельзя объяснить теорией замедленного разряда. При выделении водорода на платине стехиометрическое число V равно единице. Это значение согласуется с теорией замедленной рекомбинации. Независимость перенапряжения водорода на платине от pH раствора также указывает на большую вероятность замедленного протекания рекомбинации. Наконец, для платины наблюдается предельный ток недиффузионного происхождения, что объясняется замедленностью стадии рекомбинации. В кажущемся противоречии с этим заключением находится характер поляризационной кривой, полученной при выделении водорода из кислых растворов. Как видно на рис. 65, кривая г — 1 г на платине имеет два участка с различными значениями констант а я Ь. [c.377]

    Величина коэффициента Ь при выделении водорода на платине по наиболее точным измерениям составляет около 0,03, что также нельзя объяснить теорией замедленного разряда. При выделении водорода на платине стехиометрическое число V равно единице. Это значение согласуется с теорией замедленной рекомбинации. Независимость перенапряжения водорода на платине от pH раствора также указывает на большую вероятность замедленного протекания рекомбинации. Наконец, для платины наблюдается предельный ток недиффузионного происхождения, что возможно лишь при замедленности стадии рекомбинации. [c.378]

    Еще менее выяснен механизм выделения водорода на металлах железной группы. Установлено, что в условиях катодной поляризации на поверхности этих металлов накапливается избыточное количество адсорбированного водорода. Это следует, в частности, из опытов по электродиффузии водорода через железо, которые привели примерно к тем же результатам, какие были получены на палладии. Наклон постоянной Тафеля Ь для металлов железной группы близок к 0,12, что указывает на замедленность разряда. Однако это же значение наклона можно получить и из теории замедленной рекомбинации при таком заполнении поверхности адсорбированным водородом, какое наблюдается на металлах железной группы. Для случая выделения водорода на никеле было установлено, что перенапряжение зависит от величины, рН. Характер этой зависимости не удалось объяснить ни замедленностью разряда, ни замедленностью рекомбинации. На большую вероятность замедленного протекания рекомбинации указывают величины коэффициентов разделения изотопов водорода, а также отмеченная для никеля тенденция к появлению предельного тока недиффузионного происхождения. Для металлов этой группы наиболее обоснованным следует считать предположение о близости констант скоростей ряда стадий — разряда, рекомбинации и, возможно, электрохимической десорбции. В зависимости от конкретных условий наиболее заторможенной может оказаться любая из этих стадий, что будет приводить, соответственно, к протеканию процесса выделения водорода по одному из рассмотренных механизмов. Вероятно, здесь так же, [c.448]


Смотреть страницы где упоминается термин Перенапряжение теория замедленности стадии разряда: [c.60]    [c.466]    [c.40]    [c.312]    [c.362]    [c.375]   
Практикум по теоретической электрохимии (1954) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Перенапряжение

Перенапряжение разряда

Перенапряжение теории

Стадия разряда



© 2025 chem21.info Реклама на сайте