Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты заменимые, биосинтез

    Аминокислоты, которые образуются в организме в процессе биосинтеза, называются заменимыми. Понятно, что белковая пища может считаться полноценной лишь в том случае, если она содержит незаменимые аминокислоты. [c.414]

    Ц.- заменимая некодируемая ос-аминокислота, не включается в пептидную цепь при ее биосинтезе, а образуется в результате ферментативного окисления остатков дв)Т[ молекул цистеина (в т. ч. из разных полипептидных цепей). [c.388]


    Глутаминовая кислота, являющаяся глико генной и заменимой аминокислотой для человека и животных, также включается в синтез ряда специфических метаболитов, в частности глутатиона и глутамина. Помимо участия в транспорте аммиака и регуляции кислотно-щелочного равновесия, глутамин—это незаменимый источник азота в ряде синтезов, в частности в биосинтезе пуриновых и пиримидиновых нуклеотидов, аминосахаров, в обезвреживании фенилуксусной кислоты (синтез фенилацетил-глутамина) у человека и человекообразных обезьян, а также в синтезе [c.460]

    Все природные а-аминокислоты делятся на незаменимые которые поступают в организм только из внешней среды (ва-лин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), и заменимые, синтез которых происходит в организме. Исходными веществами для биосинтеза [c.51]

    Биосинтез заменимых аминокислот [c.399]

    Человек и животные способны синтезировать только 10 из 20 аминокислот, необходимых для синтеза белка, — это заменимые аминокислоты (24.2). Пути биосинтеза этих аминокислот разнообразны, но при этом они обладают одним важным свойством  [c.399]

    У животных эта аминокислота образуется из метионина ( незаменимая аминокислота) и серина ( заменимая аминокислота). Метионин поставляет в биосинтез цистеина атом 8, серии - углеводный скелет. Биосинтез протекает в несколько этапов. [c.120]

    Расскажите об основных различиях путей биосинтеза заменимых и незаменимых аминокислот. [c.138]

    Какие реакции лежат в основе биосинтеза заменимых аминокислот  [c.138]

    Разные виды живых организмов сильно различаются по своей способности синтезировать 20 различных аминокислот. Различаются они также и по способности использовать те или иные формы азота в качестве предшественников аминогрупп. Человек и белая крыса, например, могут синтезировать только 10 из 20 аминокислот, необходимых для биосинтеза белков (табл. 22-1). Эти 10 аминокислот называются заменимыми организм синтезирует их сам из аммиака и различных источников углерода. Другие 10 аминокислот должны поступать в организм с пищей их называют незаменимыми. Высшие растения оснащены в этом смысле лучше они могут синтезировать все аминокислоты, необходимые им для синтеза белка. Более того, они могут использовать в качестве предшественников аминогрупп не только аммиак, [c.653]

    Вначале мы познакомимся с биосинтезом заменимых аминокислот, т.е. тех аминокислот, которые синтезируются в организме человека, белой крысы и других млекопитающих. В большинстве случаев предшественником углеродного скелета заменимой аминокислоты служит соответствующая а-кетокислота, происходящая в конечном счете от того или иного промежуточного продукта цикла лимонной кислоты. Аминогруппы поступают обычно от глутамата в реакциях трансаминирования (разд. 19.1), катализируемых трансаминазами, у ко- [c.654]


    Поступающие с пищей белки вьшолняют три основные функции. Во-первых, они служат источником незаменимых и заменимых аминокислот, которые используются в качестве строительных блоков в ходе биосинтеза белка не только у новорожденных и детей, но и у взрослых, обеспечивая постоянное возобновление и кругооборот белков. Во-вторых, аминокислоты белков служат предшественниками гормонов, порфиринов и многих других биомолекул. И в-третьих, окисление углеродного скелета аминокислот вносит хотя и небольшой, но важный вклад в ежедневный суммарный расход энергии. [c.813]

    Ц.— заменимая аминокислота, в организме образуется пз метионина. Ц. участвует в биосинтезе цис-тина, глютатиона, таурина и кофермента А, играет важную роль в различных ферментативных реакциях. [c.439]

    Биосинтез заменимых аминокислот. В тканях млекопитающих возможен биосинтез только заменимых аминокислот, а незаменимые должны поступать с пищей. Исходными веществами при биосинтезе заменимых аминокислот служат промежуточные продукты распада углеводов, метаболиты ЦТК и незаменимые аминокислоты. [c.278]

    В соответствии со специфическими особенностями биосинтеза некоторые аминокислоты относят к частично заменимым или условно заменимым (см. ниже). [c.43]

    БИОСИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ [c.387]

    Неспособность животных, в том числе и человека, синтезировать незаменимые аминокислоты объясняется тем, что в их организмах отсутствуют кетокислоты, аминирование которых привело бы к образованию соответствующих аминокислот. Нужно отметить, что большинство бактерий и высших растений активно синтезирует эти аминокислоты и пути их биосинтеза у различных видов идентичны или близки. В путях биосинтеза незаменимых и заменимых аминокислот также есть существенные отличия биосинтез незаменимых аминокислот включает в себя [c.388]

Рис. 12.9. Пути биосинтеза заменимых аминокислот. ЦТК — цикл трикарбоновых кислот Рис. 12.9. Пути биосинтеза заменимых аминокислот. ЦТК — <a href="/info/1343">цикл трикарбоновых</a> кислот
    Биосинтез заменимых аминокислот 300 [c.380]

    ТЕМА 9.9. БИОСИНТЕЗ ЗАМЕНИМЫХ АМИНОКИСЛОТ [c.245]

Рис. 9.10. Пути биосинтеза заменимых аминокислот. Рис. 9.10. <a href="/info/296751">Пути биосинтеза</a> заменимых аминокислот.
    На этом мы закончим обсуждение биосинтеза заменимых аминокислот. Образование тирозина путем гидроксилирования фенилаланина рассматривалось ранее (разд. 18.16) [c.239]

    Г. к.-кодируемая аминокислота, заменимая. Биосинтез L-r. к. осуществляется из а-кетогяутаровой к-ты  [c.588]

    По хим. св-вам Г,-типичная алифатич. а-аминокислота. Количеств, определение основано на образовании окрашенных продуктов с о-фталевым альдегидом (р-ция Циммермана). В составе белков встречается чаще, чем др. аминокислоты. Служит предшественником в биосинтезе пор-фириновых соед. и пуриновых оснований. Г.-кодируемая аминокислота, заменимая его биосинтез осуществляется переамииированием глиоксиловой к-ты, ферментативным расщеплением серина и треонина. Синтезируют Г, из хлоруксусной к-ты и NH3. В спектре ЯМР в DjO хим. сдвиг протонов группы [c.587]

    Аминокислоты заменимые — такие, биосинтез которых осуществляется в организме. Из встречающихся в белках аминокислот в организме животных и человека способны синтезироваться только аланин, глутаминовая кислота, глутамин, аспарагиновая кислота, аспарагин, пролин, тирозин (синтезируется из незаменимой аминокислоты фенилаланина), цистеин (для его образования необходима незаменимая аминокислота — метионин), серин, глицт. [c.7]

    L-0.-заменимая некодируемая аминокислота, в организме играет важную роль, особенно в биосинтезе мочевины (см. Орнитиновый цикл) его метаболизм тесно связан с пролином и оксипролином. В организме О. образуется при гидролизе аргинина, восстановит, аминировании 2-амино-4-формилмасляной к-ты (прод>тгга восстановления глутаминовой к-ты) при окислит, отщеплении 5-аминогруппы О. может переходить в пролин. [c.409]

    С.-кодируемая заменимая аминокислота, образуется в организме в результате трансаминирования и послед, де-фосфорилирования 3-фосфопировиноградной к-ты, участвует в биосинтезе триптофана и серосодержащих аминокислот, обратимо расщепляется на глицин и формальдегид, претерпевает дезаминирование, превращаясь в ш1рови-ноградную к-ту. Из С. в организме синтезируются этаноламин и холин. [c.325]

    Ц.- кодируемая заменимая а-аминокислота. Ц. входит в состав белков и нек-рых пептидов (напр., глутатиона). Особенно много Ц. в кератинах. Биосинтез Ц. в растениях и микроорганизмах осуществляется тутем замены ОН на 8Н в серине. В организме животных образуется из метионина, распадается до цистамина. Характерная особенность Д.- его способность подвергаться в составе молекулы белка самопроизвольному окислению с образованием остатков цистина. Ц. участвует в биосинтезе цистина, глутатиона, таурина и кофермента А. [c.388]

Рис. - . Биосинтез заменимых аминокислот. Не показан синтез тирозина он образуется гидрокснлированием фенилаланина. Рис. - . Биосинтез заменимых аминокислот. Не показан <a href="/info/38395">синтез тирозина</a> он образуется гидрокснлированием фенилаланина.

    Как указывалось ранее, незаменимые аминокислоты не синтезируются в организме человека и животных, их необходимо включать в состав пищи для обеспечения оптимального роста и для поддержания азотистого баланса. Для человека являются незаменимыми следующие аминокислоты лейцин, изолейцин, валин, лизин, метионин, фенилаланин, триптофан, треонин, гистидин и аргинин. Восемь из перечисленных аминокислот оказались незаменимыми для многих изученных видов высших животных. Что же касается гистидина и аргинина, то эти аминокислоты могут синтезироваться в организме, но в количестве, не обеспечивающем оптимального роста и развития. Иначе обстоит дело со всеми остальными незаменимыми аминокислотами, так как организм совершенно утратил в ходе эволюции способность синтезировать их углеродные цепи, т. е. незаменимым у незаменимых аминокислот является их углеродный скелет. Высшие растения и большинство микроорганизмов способны к активному синтезу этих аминокислот. Пути их биосинтеза у различных видов организмов идентичны или близки и гораздо сложнее, чем пути образования заменимых аминокислот. Во многих из этих реакций участвуют такие посредники, как тетрагидрофолиевая кислота (ТГФ), переносчик одноуглеродных фрагментов (—СН3, — Hj, —СНО, — HNH, —СН=) и 5-адено-зилметионин — главный донор метильных групп в реакциях трансметилирования. [c.402]

    В организме человека и белой крысы синтезируются 10 или 20 аминокислот, входящих в состав белков. Остальные аминокислоты, которые должны поступать с пищей и потому называются незаменимыми, синтезируются растениями и бактериями. Аминокислоты, объединяемые под названием заменимых , образуются различными путями. Глутамат получается в результате восстановительного аминирования а-кетоглутарата. Сам глутамат служит предшественником глутамина и пролина. Аланин и аспарат образуются путем трансаминирования соответственно из пирувата и оксалоацетата. Тирозин получается в результате гидроксилирования фенилаланина, принадлежащего к числу незаменимых аминокислот. Цистеин синтезируется из метионина и серина в сложной последовательности реакций, в которой промежуточными продуктами служат S-аденозил-метионин и цистатионин. Углеродный скелет серина происходит от 3-фосфоглицерата. Серин является предшественником глицина Р-углеродный атом серина переносится на тетрагидрофолат. Пути биосинтеза незаменимых аминокислот у растений и у бактерий более сложны и длинны. Они образуются из некоторых заменимых аминокислот, а также из других метаболитов. Аллостерическая регуляция биосинтетических путей, приводя- [c.678]

    До сих пор мы рассматривали превращение N2 в NH и включение NH4 в состав глутамата и глутамина. Теперь обратимся к биосинтезу других аминокислот. Бактерии, например Е.соИ, могут синтезировать все двадцать аминокислот, входящие в основной набор, тогда как в организме человека образуется лишь половина из них. Аминокислоты, которые должны попадать в организм с пищей, называются незаменимыми, а осталъиые- заменимыми (табл. 21.1). Эти названия отражают потребность организма при определенных условиях. Например, в цикле мочевины синтезируется достаточно аргинина, чтобы удовлетворить потребности организма взрослого, но не растущего ребенка. Недостаточное содержание хотя бы одной аминокислоты приводит к отри- [c.233]

    Заменимые аминокислоты синтезируются с помощью весьма простых реакций, тогда как пути биосинтеза незаменимых амино= кислот очень сложны. Например, заменимые аминокислоты аланин и аспартат синтезируются в одну стадию из пирувата и оксалоацетата соответственно. Обе аминокислоты получают свою аминогруппу от [c.233]

    Теперь обратимся к биосинтезу незаменимых аминокислот, пути образования которых гораздо сложнее, чем пути образования заменимых аминокислот. Для обсужде- [c.239]

    Микроорганизмы используют АТР и сильный восстановитель для превращения N2 в ЫН4 Затем соли аммония используют-ся высшими организмами для синтеза аминокислот, нуклеотидов и других молекул. Основными соединениями ( пунктами входа ), в составе которых N114 вводится в промежуточный метаболизм, являются глутамин, глутамат и карбамоилфосфат. Организм человека способен синтезировать лишь половину основного набора двадцати аминокислот. Эти аминокислоты называются заменимыми в отличие от незаменимых, которые обязательно должны поступать с пищей. Пути биосинтеза заменимых аминокислот очень просты. Глутамат-дегидрогеназа катализирует восстановительное аминирование а-оксоглутарата с образованием глутамата. Аланин и аспартат синтезируются путем трансаминирования пирувата и оксалоацетата соответственно. Глутамин синтезируется из N14 и глутамата, сходным образом образуется и аспарагин. Пролин синтезируется из глутамата. Серин, образующийся из 3-фосфоглицерата,- предшественник глицина и цистеина. Тирозин синтезируется путем гидроксилирования незаменимой аминокислоты фенилаланина. Пути биосинтеза незаменимых аминокислот гораздо сложнее, чем заменимых. Эти пути в большинстве своем регулируются путем ингибирования по типу обратной связи, когда решающая реакция аллостерически инги- [c.252]


Смотреть страницы где упоминается термин Аминокислоты заменимые, биосинтез: [c.183]    [c.360]    [c.70]    [c.414]    [c.391]    [c.392]    [c.342]    [c.389]    [c.184]   
Теоретические основы биотехнологии (2003) -- [ c.117 , c.118 , c.119 , c.120 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты заменимые



© 2024 chem21.info Реклама на сайте