Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

глутамат образование

    Как правило, чистота продукта, синтезированного в подпольной ла ратории, составляет 90-99%. Однако для продажи содержание основного компонента в порошках доводится до 40 и меиее добавлением углеводов (глюкозы, лактозы, крахмала), сульфата магния, глутамата натрия, дешевых стимуляторов кофеина н эфедрина, а также прокаика, антипирина и др, В зависимости от усл шиЙ производства качества исходного сырья, условий синтеза, образования побоч ных продуктов, введенных добавок и проч.. внешний вид амфетаминов может быть разным. Цвет АМФ варьирует от белого (подобно цвету лекарственного средства) до желтого, розового или коричневого. Часто препараты АМФ имеют характерный н неприятный запах, вследствие неполного удаления органических растворителей. МАФ продается в виде сыпучего или вязкого порошка от (клого до темно-бежевого цвета, но возможны варианты коричневого или фиолетового цвета в зависимости от примесей. [c.53]


    По месту образования гормоны разделяют на нейрогормоны, гормоны, секретируемые специальными железами, и тканевые гормоны. Классификация часто затруднена, так как не во всех случаях точно определены места образования и воздействия. Согласно общепринятому определению гормонов, вещества, которые, диффундируя, действуют вблизи места их образования, не должны называться гормонами, однако все же часто к гормонам относят нейротрансмиттеры (ацетилхолин, допамин, норадреналин, серотонин, гистамин, глутамат, глицин, -у-аминобутират, таурин, вещество Р и многие другие пептиды), а также модуляторы нейронной активности нейрогормонов [569]. Возможно, не будет ошибкой рассматривать классическую эндокринологию как одну из областей нейроэндокрииологии. Мозг уже характеризуется как высокоспециализированная эндокринная железа , ибо в общем нейротрансмиссия связана с секреторными процессами, в то время как электрическая передача нервных импульсов представляет собой исключительный случай. Несмотря на трудность четкого определения, все активные в отношении центральной нервной системы пептиды следует называть нейропептидами (разд. 2.3.3), при этом понятие нейрогормоны должно соответствовать действующей классификации гормонов. [c.233]

    Во всех животных тканях и в некоторых растениях широко распространен низкомолекулярный трипептид глутатион, функции которого пока не выяснены достаточно полно, хотя он открыт сравнительно давно. Глутатион представляет собой атипичный трипептид (в котором в образовании одной из пептидных связей участвует не а-карбоксильная, а у-карбок-сильная группа глутамата) следующего строения у-глутамил-цистеинил-глицин  [c.76]

Рис. 20. Последовательные стадии образования надмолекулярных структур в 12% растворе ноли-у-бензил-Ь-глутамата в диоксане Рис. 20. <a href="/info/9312">Последовательные стадии</a> <a href="/info/56092">образования надмолекулярных структур</a> в 12% <a href="/info/1006689">растворе ноли</a>-у-бензил-Ь-<a href="/info/98738">глутамата</a> в диоксане
    Образование глутамина из глутамата сопряжено с расщеплением АТР  [c.91]

    Аргинин тоже подвергается обратному превращению в глутамат и а-кетоглутарат. Начальной стадией служит отщепление гуанидиниевой группы с образованием орнитина. Это может осуществляться действием аргиназы с образованием мочевины (рис. 14-4). Другой, аргиииит дигидролазиый путь инициируется особой гидролазой, расщепляющей аргинин на цитруллин и аммиак. Затем в результате фосфоролиза цитруллина образуется карбамоилфосфат. Расщепление последнего с образованием СО2 и аммиака [катализируемое карбаматкиназой урав нение (14-16)] может быть использовано для образования АТР у микроорганизмов, живущих на аргинине. [c.104]


    Если аминогруппа блокируется ацетилированием (рис. 14-2, стадия 2) до восстановления глутамата в полуальдегид, то циклизация предотвращается. у Альдегидная группа путем переаминирования может быть переведена в аминогруппу, и удаление блокирующей ацетильной группы приводит к образованию орнитина >. Последний в результате реакций, приведенных на рис. 14-4, превращается в аргинин. Эти реакции не только обеспечивают пути биосинтеза аргинина, протекающие во всех организмах, но обеспечивают также синтез мочевины, главного конечного азотистого продукта у млекопитающих и ряда других организмов. Интересная особенность замечена у нейроспоры когда она растет на минимальной среде, в ее клетках накапливаются большие количества орнитина и аргинина, из которых свыше 98% заключены в плавающие в цитоплазме пузырьки [ЗЗЬ]. [c.96]

    Третий пример взаимосвязи процессов метаболизма - общие конечные пути. Такими путями для распада всех биомолекул являются цикл лимонной кислоты (цикл Кребса) и дыхательная цепь. Эти процессы используются для координации метаболических реакций на различных уровнях. Так, цикл лимонной кислоты является источником СО2 для реакций карбоксилирования, с которых начинается биосинтез жирных кислот и глюкогенез, а также образование пуриновых и пиримидиновых оснований и мочевины. Взаимосвязь между углеводным и белковым обменом достигается через промежуточные метаболиты цикла Кребса а-кетоглутарат и глутамат, оксалоацетат и аспартат. Ацетил-КоА прямо участвует в биосинтезе жирных кислот и в других реакциях анаболизма, а в этих процессах связующими конечными путями выступают реакции энергетического обеспечения с использованием НАДН, НАДФН и АТФ. Важно подчеркнуть, что главным фактором для нормального обмена веществ и протекания нормальной жизнедеятельности является поддержание стационарного состояния. [c.120]

    Соответствующий альдегид с открытой цепью, образующийся путем гидролиза, окисляется обратно в глутамат. Существует и другой путь распада, начинающийся с окисления по другую сторону от азота кольца с образованием А -пирролин-2-карбоксилата. Метаболическая судьба этого соединения не ясна. [c.103]

    Глутамат, который при этом регенерирует, возвращается в ткани, а аммиак в почках используется на образование аммонийных солей, в печени — вовлекается в синтез мочевины. [c.389]

    Глутамат, глутамин и аспартат играют центральную роль и в удалении азота из органических соединений [17]. Будучи реакцией обратимой, переаминирование обычно служит начальным этапом катаболизма избыточных аминокислот. В результате присоединения азота к кето-глутарату образуется избыточный глутамат, который дезаминируется с образованием аммиака и далее — глутамина. Глутамин может также отдавать свой азот на образование аспартата. В организме животного и аспартат, и глутамин (через карбамоилфосфат) являются предшественниками мочевины, главного экскреторного азотистого соединения. Все эти взаимосвязи суммированы в уравнении (14-12), а дальнейшие подробности будут даны в последующих разделах. [c.89]

    Глутамин — это генетически детерминированная аминокислота, входящая в состав белков. Таким образом, образование его из глутамата — это путь синтеза заменимой аминокислоты в организме. [c.389]

    Вскоре стало ясно, что глутамин и аспарагин следует рассматривать как растворимые и нетоксичные переносчики дополнительного количества аммиака, заключенного в их амидных группах. Под действием активной синтетазы из глутамата и аммиака образуется глутамин [уравнение (14-12), стадия г], а под действием другого фермента происходит перенос амидного азота на аспартат с образованием аспарагина [уравнение (14-12), стадия д]. Амидный азот глутамина используется в многочисленных биохимических процессах, в том числе в образовании карбамоилфосфата [уравнение (14-12), стадия е разд. В, 2], глюкозами-на [уравнение (12-4)], NAD+ (разд. И), пуринов (разд. Л,3), СТР (разд. Л, 1), tt-аминобензоата (разд, 3,3) и гистидина (разд. К). [c.89]

    Из приведенной схемы процесса мочевинообразования нетрудно видеть, что один из атомов азота мочевины имеет своим источником свободный аммиак (через карбамоилфосфат) второй атом азота поступает из ас-партата. Аммиак образуется главным образом в процессе глутаматдегидрогеназной реакции. В процессе пополнения запасов аспартата участвуют три сопряженные реакции сначала фумарат под действием фумаразы присоединяет воду и превращается в малат, который окисляется при участии малатдегидрогеназы с образованием оксалоацетата последний в реакции трансаминирования с глутаматом вновь образует аспартат. [c.450]

    В 1932 г. Кребс и Хензелайт [33с] предположили, что в срезах печени мочевина образуется в ходе циклического процесса, в котором орнитин превращается сперва в цитруллин и далее в аргинин. Гидролитическое расщепление аргинина приводит к образованию мочевины и регенерации орнитина (рис. 14-4, внизу). Последующие эксперименты полностью подтвердили это предположение. Попытаемся проследить весь путь удаляемого в печени азота избыточных аминокислот. Транс-аминазы (стадия а, рис. 14-4, в центре справа) переносят азот на а-кетоглутарат, превращая последний в глутамат. Поскольку мочевина содержит два атома азота, должны быть использованы аминогруппы двух молекул глутамата. Одна из этих молекул прямо дезаминируется глутаматдегидрогеназой с образованием аммиака (стадия б). Этот аммиак присоединяется к бикарбонату (стадия в), образуя карбамоилфосфат, карбамоильная группа которого переносится далее на орнитин с образованием цитруллина (стадия г). Азот второй молекулы глутамата путем переаминирования переносится на оксалоацетат (реакция й) с превращением его в аспартат. Молекула аспартата в результате реакции с цитруллином целиком включается в состав аргининосукцината (реакция е). В результате простой реакции элиминирования 4-углеродная цепь аргининосукцината превращается в фумарат (стадия ж) в качестве продукта элиминирования образуется аргинин. Наконец, гидролиз аргинина (стадия з) дает мочевину и регенерирует орнитин. [c.96]


    Один из путей катаболизма пролина в сущности сводится к обращению его образования из глутамата. Под действием пролиноксидазы происходит образование А -пирролин-5-карбоксилата. [c.103]

    А.Е. Браунштейном трансреаминированием. Сущность его сводится к восстановительному аминированию а-кетоглутаровой кислоты с образованием глутаминовой кислоты (реакцию катализирует БАДФ-зависимая глутаматдегидрогеназа, работающая в режиме синтеза) и к последующему трансаминированию глутамата с любой а-кетокислотой. В результате образуется Е-аминокислота, соответствующая исходной кетокислоте, и вновь освобождается а-кетоглутаровая кислота, которая может акцептировать новую молекулу аммиака. Роль реакций трансаминирования как в дезаминировании, так и в биосинтезе аминокислот может быть представлена в виде схемы  [c.438]

    Первая стадия окисления глутаминовой кислоты аналогична реакции окислительного дезаминирования. Восстановленный НАДН далее окисляется при участии флавиновых ферментов и цитохромной системы (см. главу 9) с образованием конечного продукта воды. Образовавшийся аммиак благодаря обратимости ферментативной реакции, но обязательно в присутствии восстановленного НАДФН может участвовать в синтезе глутамата из а-кетоглутаровой кислоты. Различают три разных типа глу- [c.433]

    Таким образом, в результате реакций синтеза амидов глутамата и аспартата — соответственно глутамина и аспарагина, удаления аммиака с помощью глутаматдегидрогеназы и образования аммонийных солей в почках в целом происходит детоксикация и выведение около 10% аминного азота катаболизи-руемых аминокислот, аминов, азотистых оснований и других азотсодержащих компонентов. [c.391]

    Следует подчеркнуть, однако, что значительно больший удельный вес имеет посттрансляционная химическая модификация белков, затрагивающая радикалы отдельных аминокислот. Одной из таких существенных модификаций является ковалентное присоединение простетической группы к молекуле белка. Например, только после присоединения пиридоксальфосфата к -аминогруппе остатка лизина белковой части—апо-ферменту—образуется биологически активная трехмерная конфигурация аминотрансфераз, катализирующих реакции трансаминирования аминокислот. Некоторые белки подвергаются гликозилированию, присоединяя олигосахаридные остатки (образование гликопротеинов), и обеспечивают тем самым доставку белков к клеткам-мишеням. Широко представлены химические модификации белков в результате реакции гидроксилирования остатков пролина, лизина (при формировании молекул коллагена), реакции метилирования (остатки лизина, глутамата), ацети-лирования ряда N-концевых аминокислот, реакции карбоксилирования остатков глутамата и аспартата ряда белков (добавление экстра-карбоксильной группы). В частности, протромбин (белок свертывающей [c.532]

    Реакции трансаминирования были изучены в системе, содержащей ПАЛФ, ионы тяжелых металлов и субстраты. Добавление слабого основания к системе, содержащей пиридоксаль и аминокислоту, полностью подавляет все реакции, кроме расщепления Са—Н-связи в такой модели происходит только транс-аминирование [45, 46]. В работе [47] были определены индивидуальные константы скорости для стадии образования альди-мина. Их значения для реакции аминокислоты (глутамата) с анионной, биполярной и катионной формами модельного соединения З-оксипиридин-4-альдегида равны соответственно — — 80,2 моль мин- А бип = 1,12-Ю" моль мин , ккач— = 2,3-10 моль- минг . Константа скорости ферментативной реакции много больще, а именно к= 10 моль минг . Теоретический расчет показывает, что скорость нуклеофильного присоединения к карбонильной группе возрастает в 10 —Ю" раз, если бимолекулярная реакция трансформируется в мономолеку-лярную с надлежащим пространственным расположением взаимодействующих групп [48]. Можно предположить, что фермент обеспечивает такую ориентацию этих групп на всех последовательных стадиях процесса и стабилизует наиболее активные в соответствующих стадиях ионные формы субстратов, коферментов и функциональных групп активного центра [49]. [c.379]

    Реакции (IX.37) и (IX,38) являются обратимыми и играют роль не только в образовании азотсодержащих соединений, но и в выводе азота из органических молекул, если они подлежат дальнейшей деструкции в биознергеаических целях или должны использоваться как сырье для синтеза других, ие содержащих атомов N1 классов органических молекул. Так, уже говорилось, что аминокислоты в определенных физиологически. ситуациях могут использоваться для биосинтеза Сахаров путем глюконеогенеза. Для этого необходимо удаление аминогрупп, которое достигается путем реакции переаминирования с с -кетоглутаратом. Удаление аминогруппы из образующегося глутамата моясет происходить путем обращения глутаматдегидрогеназной реакции. [c.387]

    К э-йэму можно добавить, что-митохондрии являются активными участниками некоторых этапов азотного обмена. В матриксе функционирует глутамат дегидрогеназа, продуцирующая при работе в направлении образования а-кетоглутарата [c.433]

    Глутаматдегидрогеназа (ГДГ) катализирует образование глутамата из а-кетоглутарата и аммиака при участии НАДН Н" или НАДФН Н" . [c.398]

    Одной из характерных особенностей таких полипептидных монослоев является их высокий поверхностный момент, значительно превосходящий поверхностный момент полипептидов с неполярными боковыми цепями, например поли-В, Ь-аланина. Полярные связи в боковых цепях влияют на поверхностный момент так же, как и связи, расположенные в главной цепи. Важно подчеркнуть, что поверхностная вязкость поли-Р-бензпл-Ь-аспартата проявляется только при высоких поверхностных давлениях. Вообще поверхностная вязкость мопослоев в конденсированном состоянии оказывается высокой даже при тех площадях, при которых поверхностное давление все еще остается достаточно низким напротив, для монослоя, находящегося в растянутом состоянии, поверхностная вязкость обнаруживается лишь при площадях, при которых поверхностное давление становится достаточно высоким. Другими словами, поверхностная вязкость конденсированной пленки действительно связана с самим монослоем, тогда как поверхностная вязкость растянутой пленки, вероятно, характеризует сильно сжатый монослой. Такое характерное различие в вязкостных св011ствах конденсированных и растянутых пленок наблюдается не только у сополимерных полипептидов, о которых говорилось выше, но и у всех других полимеров. Хотя поверхностная вязкость поли-Р-бензил-Ь-аспартата дает картину, характерную для пленок растянутого типа, кривая зависимости давление — площадь соответствует пленке конденсированного типа. Более того, поверхностная вязкость плепок этого полипептида характеризуется положительным температурным коэффициентом, что отличает их от других пленок растянутого типа, которые имеют обычно отрицательный температурный коэффициент. Различия между пленками ноли-у-бензил-Ь-глутамата и поли-Р-бензил-Ь-аспартата и особенно аномальные свойства последнего обусловлены расположением полярных групп в боковых цепях. Карбонильные группы боковых цепей могут располагаться вне водной поверхности, однако в случае поли- -бензил-Ь-аспартата они соприкасаются с водной поверхностью и вряд ли отличаются от карбонильных групп главной цепи. В соответствии с этим возможность образования водородных связей между карбонильной группой боковой цепи и аминогруппой главной цепи делает конфигурацию этого полимера менее устойчивой. Это может быть причиной [c.306]

    У метилотрофов (Pseudomonas, Hyphomi robium и др.) возможен путь окисления метиламина по так называемому N-метилглута-матному пути, где L-глутамат помогает образованию формальдегида. [c.157]

    Образование микрокристаллов в упорядоченных растворах полимеров может преобразовать истинную мезофазу (жидкую и двояконреломляющую) в гель [3, 98]. Как показано на рис. 31, при постепенном понижении концентрации растворителя в анизотропном растворе полимера появляются микрокристаллические пучки полимерных волокон. В такой двухфазной системе полимерные цени могут погружаться в жидкую фазу и переходить от одного кристалла к другому. Вся система становится гелем со сшивками, возникшими вследствие микрокристаллизации. Более поздние работы [22, 99] показывают, что последовательные стадии этого процесса могут и не быть так просты. Некоторые синтетические полипептиды, например полибензил-Ь-глутамат (ПБГ), образуют а-спирали и дают холестерические мезофазы в таких растворителях, как диоксан (см. гл. VI). Рентгенограммы показывают наличие локальной гексагональной упорядоченности в этих жидких кристаллах. Расстояние между полимерными цепями зависит от концентрации раствора. Растворитель выступает в роли смазки в гексагональной решетке и облегчает взаимное скольжение волокон (как в мышцах). При испарении большей части растворителя в некоторых областях упаковка полимеров достигает максимальной плотности, и взаимное положение цепей фиксируется. Раствор перестает быть жидким. Эти преобразования могут и не затраги- [c.307]

    Образование сферолитов характерно не только для полимеров. Впервые этот термин использован при описании поликристаллических структур, обнаруженных в изверженных породах. Сферолитные образования наблюдаются в различных неорганических и органических кристаллических соединениях [83, 84]. Глобулярные белки, такие как, например, фермент карбоксииепти-даза, также кристаллизуются из разбавленного раствора в сферо-литной форме [85]. Как было показано Робинсоном [86], после разделения фаз в разбавленном растворе поли-у-бензил-1--глутамата в спира-лизующих растворителях образуются большие, хорошо очерченные сферолиты (рис. 112) . При наблюдении между скрещенными поляроидами оптическая природа этих сферолитов оказывается той же, что у сферолитов ленточного типа, образующихся при кристаллизации линейных молекул из расплава. Следовательно, вязкость среды не влияет решающим образом на возможность образования сферолитов. Характерная черта сферолитов поли-у-бензил-1-глутамата — появление полос гашения, расположенных по радиусу и хорошо видимых в обычном свете. [c.314]


Смотреть страницы где упоминается термин глутамат образование: [c.179]    [c.43]    [c.89]    [c.103]    [c.174]    [c.246]    [c.261]    [c.352]    [c.390]    [c.641]    [c.462]    [c.462]    [c.546]    [c.114]    [c.229]    [c.48]    [c.73]    [c.389]    [c.395]    [c.417]    [c.322]    [c.312]   
Биохимия Том 3 (1980) -- [ c.218 ]




ПОИСК







© 2025 chem21.info Реклама на сайте