Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокопрочное состояние и предельная прочность

    ВЫСОКОПРОЧНОЕ СОСТОЯНИЕ И ПРЕДЕЛЬНАЯ ПРОЧНОСТЬ [c.39]

    Согласно концепции Шишкина, и прочность не должна зависеть от степени ориентации. Но известно [3.25], что хрупкая прочность сильно зависит от ориентации, и это понятно чем больше ориентация, тем большая часть рвущихся целей находится в направлении оси волокна. Поэтому в высокопрочном состоянии при переходе от неориентированного к предельно ориентированному состоянию хрупкая прочность должна возрастать в три раза. Далее, очевидно, что у ориентированного полимера с молекулярной массой М—>100 разрушение может происходить только при разрыве цепей. Практически эта ситуация реализуется для промышленных полимеров (М>10 ). Макромолекулы достаточно длинны, чтобы не наблюдалось их скольжение без разрыва цепей. Далее, если прочность полимеров определяется силами межмолекулярного взаимодействия, то расчет теоретической прочности должен производиться по формуле Орована Е, где Е — модуль Юнга (см. гл. 1). Модуль упругости твердых полимеров определяется межмолекулярными взаимодействиями. Для капроновых волокон = 2,5 ГПа и поэтому сгт = 0,25 ГПа, что намного ниже реальных значений ар. Поэтому правильный расчет а должен основываться на гипотезе разрыва химических связей. [c.51]


    Для всех этих случаев в главе рассмотрены физические теории прочности и долговечности полимеров и стекол, методы расчета предельно достижимой прочности полимеров, обсуждена связь термодинамических и тепловых свойств с прочностью с точки зрения проявления энгармонизма в твердых телах. В главе проанализированы различные точки зрения на природу разрушения полимеров и сделай вывод о том, что в твердых полимерах ведущим процессом разрушения является разрыв химических связей, а не преодоление межмолекулярных взаимодействий. Рассмотрен термофлуктуационный и фононный механизмы зарождения субмикротрещин и их роль в разрушении полимеров в высокопрочном состоянии. [c.58]

    На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), — пределы текучести ао, , прочности, длительной прочности и ползучести o f. Наряду с этими характеристиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 6 и сужение ударная вязкость й , предел выносливости , твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а. [c.38]

    При абсолютном нуле предельная прочность высокопрочного состояния стекла равна  [c.56]

    Итак, хотя материалы, имеющие различные виды микротрещин, представляют огромную практическую важность, в последнее время все больше внимания уделяется созданию высокопрочных материалов с предельно возможной прочностью о . Эта прочность может быть достигнута для материала, структуру которого в идеале можно представить настолько однородной, что все полимерные цепи и химические связи в однородно напряженном состоянии нагружены равномерно. И хотя идеального материала с теоретической прочностью практически получить невозможно, к нему можно приблизиться вплотную, создавая материалы по возможности с однородной структурой. Предельная прочность Оп реальных полимеров имеет несколько [c.57]


    Конструкционная прочность по своей природе является величиной, которая имеет рассеяние, поскольку имеют рассеяние свойства материала и размеры. Отсюда следует, что уровень рассеяния различных видов прочности может оказаться существенно разным. Например, если ведется оценка прочности по предельному состоянию наступления текучести стенки сосуда, работающего под давлением, то рассеяние будет находиться в пределах рассеяния свойств металла по и толщины листового металла. Для многих марок металла это рассеяние обычно невелико. Если же оценка прочности будет проводиться по предельному состоянию разрушения сосуда, изготовленного из высокопрочной стали, чувствительной к концентрации напряжений, то рассеяние будет зависеть от концентрации напряжений, которая в свою очередь зависит от радиусов закруглений в зонах концентрации. Рассеяние в этом случае окажется более значительным. Сравнение по долговечности при испытании сосудов при переменном давлении даст еще большее [c.42]

    Большой интерес к высокопрочным состояниям, полученным при обработке средне- и высокоуглеродистых сталей на мартенсит, связан с возможностью достижения предельно высоких уровней статической и циклической прочности на гладких образцах. Вместе с тем такие стали характеризуются высокой чувствительностью к наво-дороживанию. После закалки и последующего отпуска при высокой температуре (свыше 650 °С) формируется мелкозернистая структура отпущенного мартенсита, что приводит к значительному повышению стойкости к растрескиванию при достаточно высокой прочности стали. [c.480]

    Теперь перейдем к сравнению с экспериментальными данными. Рассмотрим капрон (см. табл. 3.1), для которого в неориентированном состоянии ар = 160 МПа (293 К). В работе [3.30] в качестве аргумента приводятся наибольшие значения прочности 60—400 МПа для неориентированных полимеров. Капрон попадает в этот интервал. Автор концепции утверждает, что приведенные значения прочности далеки от прочности химических связей. И это верно, но вопрос заключается в том, для какого состояния характерны эти цифры для высокопрочного или низкопрочного. Нет сомнений, что эти цифры соответствуют низкопрочному состоянию неориентированных полимеров, когда разрушение идет по перенапряженным цепям. Для капрона (см. табл. 3.1) коэффициент перенапряжения х = 25 и, следовательно, разрушение надо характеризовать не ар=160 МПа, а значением в 25 раз большим, т. е. 4 ГПа. А это значит, что /з рвущихся цепей нагружена так же, как и полное число цепей в предельно ориентированном состоянии (12 ГПа). Но 12 ГПа соответствует прочности химической связи ап = 12,9 ГПа в полиамидных цепях, рассчитанной Губановым и Чевычеловым [2.11] (см. ип в табл. 2.1). Поэтому если принять правильные значения прочности в высокопрочном состоянии, то разрыв полимера следует объяснить разрывом химических связей. Для ориентированного капрона ар=1 ГПа (293 К) при коэффициенте перенапряжения, определенном из экспериментального значения у, равном 12. Поэтому перенапряженные цепи, ответственные за процесс разрыва, характеризуются ар=12 ГПа, что соответствует Оп=12 ГПа — предельной прочности, рассчитанной из энергии разрыва С—К-связи. [c.51]

    В связи с этим отметим, что статистические закономерности характерны не для всех случаев хрупкого разрушения. Образцы с идеальной структурой характеризуются теоретической прочностью От, которэя исключает статистический характер разрушения. Далее, бездефектные образцы (высокопрочное состояние материала) характеризуются предельной прочностью а,г, которая также практически не подчиняется статистическим закономерностям (нрнмер — бездефектное стекловолокно). Для полимеров бездефектные волокна иока не получены, хотя в гл. 3 отмечалось, что получены суперволокна с прочностью, [c.245]


Смотреть страницы где упоминается термин Высокопрочное состояние и предельная прочность: [c.46]    [c.52]    [c.237]   
Прочность и механика разрушения полимеров (1984) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Высокопрочное состояние

Предельная прочность

Предельные состояния



© 2025 chem21.info Реклама на сайте