Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, определяющие прочность полимеров

    В настоящей главе освещены вопросы, связанные только с прочностью полимеров на разрыв, так как другие виды разрушения еще мало изучены. Изучение прочности полимеров и факторов, влияющих на нее, очень важно с точки зрения отыскания путей уменьшения скорости возникновения и роста трещин или надрывов, что, в свою очередь, даст возможность резко улучшить механические свойства этих материалов и удлинить срок службы изделий, полученных из них. При этом необходимо учесть, что возможность практического применения полимерных материалов определяется не столько их стойкостью к разрушению, сколько их способностью сопротивляться большим деформациям, сильно искажающим форму полимерного изделия. [c.425]


    А. Д. Абкин, А. П. Шейнкер. РАДИАЦИОННАЯ СТОЙКОСТЬ полимеров, их способ ность противостоять действию ионизирующих излучений. Зависит от структуры полимера, пов-сти и толщины образца, а также от эксплуатац. факторов (т-ра, среда, мощность дозы облучения и др.). Количеств, критерий — пороговая (предельная) доза, при к-рой материал становится непригодным в конкретных условиях применения (напр., конструкц. материал утрачивает мех. прочность), или соотношение значений к.-л. св-ва материала до и после его облучения определ. дозой. Примеры радиационно стойких материалов полистирол (пороговая доза 10 рад), феиоло-формальдегидный, эпоксидный, полиэфирный стеклопластики ( 10 рад). Р. с. повышают введением в полимер антирадов или (при эксплуатации изделий на воздухе) их комбинаций с антиоксидантами. [c.488]

    Упругие свойства отвержденных клеев, зависящие от физического состояния эпоксидного полимера, плотности сетки химических связей и интенсивности межмолекулярного взаимодействия, во многом определяют когезионную прочность пленки клея и, следовательно, работоспособность соединений. Однако этим вопросам не уделяется пока должного внимания, и в литературе приводятся в основном данные об изменении прочности клеевых соединений при воздействии температуры и некоторых других факторов. Установление взаимосвязи между характеристиками соединений и упругими свойствами пленок клеев различного состава облегчает создание соединений с требуемыми эксплуатационными параметрами. [c.128]

    Итак, при утомлении тонких образцов под действием больших напряжений время сопротивления утомлению возрастает с усилением межмолекулярного взаимодействия. Наблюдаемая зависимость времени сопротивления утомлению от максимального напряжения аналогична зависимости для статической усталости. При условиях утомления, соответствующих определяющему влиянию химических процессов, усиление межмолекулярного взаимодействия сопровождается, наоборот, уменьшением сопротивления утомлению. Таким образом, в зависимости от того, какие процессы определяют прочность полимеров в конкретных условиях эксплуатации, влияние определенных факторов (в рассмотренном примере межмолекулярное взаимодействие) может быть прямо противоположным. [c.149]

    Выше уже говорилось о том, что основная цель введения наполнителя — повышение прочностных характеристик получаемых материалов. Сложность процессов взаимодействия полимеров с наполнителями обусловливает тот факт, что зависимости прочностных свойств наполненных полимеров определяются многими факторами [15, 207]. Можно, однако, сделать некоторые общие выводы относительно влияния наполнителей на прочность полимеров. В частности, в большинстве случаев механическая прочность возрастает пропорционально содержанию и степени дисперсности наполнителя. [c.170]


    Прочность зависит от времени действия нагрузки, температуры и других факторов и определяется структурой полимера, зависящей в свою очередь от молекулярной массы, молекулярной [c.59]

    Так как введение наполнителя существенно влияет на релаксационные свойства полимера, в частности, на температуру перехода, характер влияния наполнителей на прочность полимера определяется, в числе прочих факторов, характером нагружения. Обнаружен эффект температурного обращения усиливающего действия наполнителей , который зависит прежде всего от скорости нагружения. Этот эффект сводится к тому, что одинаковые количества одного и того же наполнителя, введенного в данный полимер, могут увеличивать или уменьшать прочность полимера в зависимости от его физического состоя- [c.12]

    Как было показано выше, связь термостойкости полимеров с их химическим строением носит сложный характер. Термическую устойчивость полимерной цепи определяют прочность химических связей, составляющих цепь (энергетический фактор), и структурные особенности полимера (энтропийно-кинетический фактор). Немаловажное значение имеют и вторичные процессы взаимодействия реакционноспособных групп или свободных радикалов с характерными связями или гетероциклами макромолекул. [c.285]

    Термическая деструкция полимеров может протекать как по цепному, так и по случайному механизму. По цепному механизму образуется чистый мономер, по случайному — разнообразные продукты в зависимости от структуры полимера. Дпя карбоцепных полимеров термостабильность определяется прочностью С-С-связей, поэтому ниже мы рассмотрим, какие факторы влияют на прочность этих связей. [c.213]

    Вязкоупругие свойства геля полимера и реализация начального градиента давления определяют его селективность при закачке в неоднородные по проницаемости пласты. Очевидно, что в пропластки с большей проницаемостью полимер внедрится на большую глубину, чем в малопроницаемые. Кроме того, следует учесть, что при радиальной фильтрации градиент давления обратно пропорционален расстоянию от скважины. Поэтому можно утверждать при внедрении раствора в высокопроницаемые зоны пласта на определенную глубину после процесса сшивки фильтрация в этом пропластке может быть существенно снижена, а при определенном заданном объеме закачки раствора и прочности образовавшегося геля фильтрация может быть вообще прекращена на длительное время. В то же время в пропластках с пониженной проницаемостью, если даже в них и проникнет раствор, происходит движение жидкости после образования в них геля. Чем ближе к забою скважины, тем выше градиент давления и, следовательно, ниже сопротивления, которые оказывает гель течению воды, фильтрующейся вслед за ним остаточный фактор сопротивления подчиняется псевдопластическому характеру течения. [c.89]

    Исходя нз теории упругости полимеров, В. А. Каргиным и Г. Л. Слонимским [191] разработана теория трех деформационных состояний стеклообразного, высокоэластичного и вязкотекучего. Температурные интервалы этих состояний зависят от размеров ССЕ, интенсивности внешнего воздействия (скорости нагрева) и других факторов. С целью удобства сопоставлении механической прочности различных НДС, находящихся ниже температуры текучести, предложены стандартные методы, с помощью которых определяют интервал хрупкости, дуктильности и пенетрацию. Поверхностное натяжение является одной из определяющих характеристик для форлМЫ ССЕ тех НДС, в которых обе фазы представляют собой жидкости или жидкость и газ. Поверхностное натяжение веществ находится в зависимости от сил ММВ в них. Поверхностное натяжение жидких тел 1а границе с воздухом сопоставимо с силами ММВ в объеме. Поэтому жидкость под влиянием поверхностного натяжения стремится принять такую форму, при которой ее поверхность при данном объеме будет наименьшей, т. е. сферической. Несмотря на более [c.146]

    Существует тесная взаимосвязь между различными механическими свойствами и процессом разрыва полимеров. Поэтому целесообразно хотя бы в общих чертах коснуться не только прочности, но и других механических свойств. Важными характеристиками полимера являются его статический и динамический модули, которые определяются главным образом межмолекулярным взаимодействием, ориентацией, кристалличностью, степенью поперечного сшивания, разветвленностью цепных молекул. Этими же факторами в значительной мере определяется хрупкость. Ударная вязкость сильно зависит от содержания низкомолекулярной части полимера, при ее повышении ударная вязкость уменьшается. Пластичность, как правило, увеличивается при добавлении веществ, присутствие которых делает надмолекулярную структуру менее плотной. [c.58]

    Как уже отмечалось ранее, одним из важных факторов обеспечения противокоррозионных свойств лакокрасочных покрытий является адгезионная прочность и ее стабильность при эксплуатации. В производственных условиях адгезионная прочность большинства покрытий при эксплуатации в водных сероводородсодержащих средах и влажной производственной атмосфере падает и нередко достигает нулевых значений. Прочность и долговечность адгезионных соединений определяется как природой поверхности металла, так и физико-химическими свойствами граничных слоев полимера. В большинстве опубликованных работ по исследованию адгезионных соединений рассматривается в основном влияние химической природы или структурных особенностей пленкообразователей на величину адгезионной прочности подложки и ее роли в процессах межфазного взаимодействия не уделяется должного внимания. Вместе с тем известно, что физико-химическое состояние подложки существенно влияет на процессы адгезионного взаимодействия и особую роль в этих явлениях играет адсорбированная на подложке вода [58]. [c.78]


    Развитие химических процессов в нагруженном полимере может в зависимости от условий опыта вызвать даже большее уменьшение прочности, чем протекание чисто физических процессов разрушения. В этом случае развитие процесса разрушения полимера во времени определяется не обычными законами прочности, а кинетикой химических процессов, ослабляющих полимерный материал, и различные факторы могут оказать влияние, прямо противоположное по сравнению с их влиянием на процесс разрушения химически неизменного полимера. [c.159]

    Кроме ярко выраженного эффекта растрескивания напряженных материалов под действием жидких сред часто наблюдается значительное снижение долговременно статической и усталостной прочности жестких полимеров в стеклообразном состоянии. У эла--стичных и линейных полимеров уменьшение долговременной прочности может и не сопровождаться видимым растрескиванием, а происходит в результате набухания и разрыхления структуры. Устойчивость полимеров к воздействию активных внешних сред в общем случае определяется тремя факторами приложенным напряжением, структурой материала, активностью среды. Естественно, все эти факторы зависят от температуры и их относительная роль может меняться при различных температурах. [c.121]

    В процессах такого типа вскоре после начала полимеризации реакционная смесь содержит полимер в дисперсной фазе, привитой сополимер и растворимый полимер. Привитой сополимер ассоциируется с полимером в момент его осаждения в дисперсную фазу, и образуется устойчивая дисперсия зародышевых частиц. Число и размер таких частиц определяются комбинацией нескольких факторов, а именно соотношением количеств полимера в дисперсной фазе и привитого сополимера, прочностью их ассоциации и степенью их растворимости в непрерывной фазе. [c.76]

    Прочность является весьма сложной функцией упругих и релаксационных свойств полимерной системы [2, 88, 92, 93]. Заметим, что сами эти параметры непрерывно меняются в процессе деформирования, поскольку при этом непрерывно меняется структура деформируемого полимера. Концентрация узлов сетки в значительной мере определяет как упругие, так и релаксационные свойства эластомеров, их способность к структурным перестройкам при деформировании, и в конечном счете прочностные свойства эластомеров. Хотя полная количественная теория процесса деформирования и разрушения эластомеров пока еще не создана, качественная картина явления достаточно ясна, чтобы представить влияние рассмотренных выше факторов на процесс разрушения эластомера и его предельные прочностные характеристики. Кратко рассмотрим этот вопрос. [c.221]

    Для получения высококачественных изделий путем вторичной и многократной переработки литьем существенное значение имеет предварительная подготовка сырья, основными стадиями которой являются очистка, измельчение и сушка. Для измельчения полиамидных литьевых отходов на заводах используются ножевые роторные дробилки. Большое распространение получили дробилки Кузнецкого завода полимерного машиностроения Кузполимермаш . Кроме того, применяются измельчители типов ИПР-100, ИПР-150 производительностью до 200 кг/ч. Их производительность определяется следующими факторами прочностью и пластичностью отходов термопластов, насыпной плотностью измельченного материала, скоростью и мощностью вращения ротора, размерами калибрующей решетки, размерами углов заточки и степенью износа ножей, зазором между подвижными и неподвижными ножами [35]. Для сушки термопластичных полимеров применяются контактные сушилки (электрошкафы, вакуум-сушильные шкафы, вакуум-сушилки, обогреваемые потоком инертных газов, и др.). В вакуум-сушильных шкафах, например, неподвижный слой высушиваемого полимера укладывают на противни, которые устанавливают на обогреваемые полки температура сушки не превышает 150°С. Для капрона-крошки применяются также вакуум-барабанные сушилки, в которых капрон сушится при непрерывном перемешивании, в результате чего достигается равномерность сушки. Сушка происходит в вакууме при остаточном давлении 6—10 мм рт. ст. Это способствует удалению кислорода из барабана сушилки. Одновременно в барабан сушилки допускается загрузка не более 1800 кг капрона-крошки. Продолжительность сушки зависит от структуры материала, степени измельчения, начальной и конечной температуры и других факторов. Вследствие измельчения полимера увеличивается поверхность тепло-и массообмена [36, 37]. [c.51]

    ТЕРМОСТОЙКОСТЬ (термостабильность), способность хим. в-в и материалов сохранять неизменным хим. строение (и физ, св-ва) при повышении т-ры. Нагревание может вызьшать в образце крекинг, пиролиз, окисление, деструкцию полимеров и др. процессы. Т. зависит от природы в-ва и определяется прочностью хим, связей в нем (термодинамич. аспект),, механизмом и кинетикой термич. р-ций (кинетич. аспект). Факторы, влияющие на кинетику термич. р-ций (дефекты кристаллич, структуры, наличие примесей, природа среды и т. д.), могут изменять Т. Знание прочности хим. связей, механизма и кинетики термич. р-ций позволяет предсказывать Т. Иногда для этого используют мат. модели термдч- процессов или эмпирич. зависимости скорости термин. р-ций от параметров системы, напр, от т-ры стеклования в случае жестких неплавких ароматич. полимеров. [c.546]

    Повышение прочности каучуков в результате введения наполнителей определяется также характером разрастания трещин, возникающих на дефектах в массе резины [534, 535]. В вершине трещины материал находится под очень большим напряжением, примерно в 10 раз превЪгшающем номинальное напряжение в образце. При разрыве тонкого волоконца полимера в вершине трещины надрыв распространится на расстояние, сравнимое с его толщиной (10—100 А). В этот момент разорвавшееся волоконце релаксирует, передавая высокое напряжение новой части материала, находящейся теперь в вершине надрыва. Этот материал— новое волоконце — растягивается под нагрузкой, ранее приходившейся на долю разорвавшегося волоконца. Скорость распространения надрыва определяется избыточным напряжением на волоконце и его вязкоупругими свойствами. Этими же факторами определяется скорость распространения трещины через п волоконцев за в-ремя в- На основе этих представлений были получены формулы, связывающие напряжение и удлинение при разрыве  [c.266]

    Авторы отводят главную роль фактору времени, корректируя понятие предела прочности. В старом понимании этот термин означал усилие разрыва, а продолжительность действия напряжения до разрушения не принималась во внимание. В действительности это понятие подразумевает долговечность образца при данной нагрузке, а не его предел прочности. Полученное отнощение позволило сделать вывод о том, что разрыв является активационным процессом, скорость которого определяется тепловыми флуктуациями, зависящими от значений КТ. Для разрушения связей, определяющих прочность полимера, необходимо, чтобы скомпенсировался энергетический барьер 1о, величина которого зависит от природы химических связей. Установлено также, что энергетический барьер цо под действием растяжения уменьшается на значение ау. Итак, чем больше нагрузка на материал, тем меньше энергетический барьер, препятствующий процессу разрыва. Уравнение позволяет глубже выяснить механизм деструкции путем установления зависимости, существующей между энергетическим барьером хо и структурными элементами (межмолекулярными силами и химическими связями), которые обусловливают прочностные свойства исследуемого полимера. Определив энергетический барьер (Хо, авторы пришли к выводу, что значения цо по порядку величины совпадают с величиной энергии химических связей (45 ккал моль). Таким образом, разрушение полимерных волокон под действием растяжения, согласно проведенным исследованиям, развивается во времени, зависит от интенсивности нагрузки и возникает в результате разрыва химических связей. Межмолекулярные связи [c.27]

    Влияние молекулярно-массового распределения (ММР) олигомерного блока на физич. свойства У. о. зависит от их микроструктуры. В кристаллизующихся статистич. эластомерах (литьевых, вальцуемых) расширение ММР олигомера, сопровождают,ееся ростом скорости II глубины кристаллизации, вызывает снижение 7 с II падение прочности полимера. Последнее связано с увеличением нерегулярности расположения уретановых групп, приводяпщм к снижению п.ютности физических сшивок. С этим фактором, а также с повышением содержания более высокомолекулярных фракций олигомера связано и снижение T . ММР олигомерного блока в аморфных статистич( ских У. э. мало сказывается на их свойствах, которые определяются в этом случае суммарной концентрацией уретановых групп. [c.342]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Сольволитический метод оценки эффективности адгезионного взаимодействия полимеров предполагает необходимость изучения закономерностей поведения соответствующих систем в жидких средах-инертных и активных. В больщинстве случаев такое воздействие приводит к уменьщению прочности адгезионных соединений, что иллюстрируется данными табл. 4. В основе этого эффекта лежат две причины - снижение когезионных характеристик переходных слоев полимеров вследствие либо воздействия ад-сорбционно-активных сред [306], либо пластифицирующего действия молекул диффузантов [307], а также ослабление межфазных связей благодаря расклинивающему влиянию слоя жидкости и установлению адсорбционно-десорбционного равновесия на границе раздела фаз [308]. Первая группа факторов определяет влияние органических жидкостей, вторая-воды. Нетрудно показать, что общей причиной в данном случае является снижение межфазной поверхностной энергии а,,. В работе [309] предложена экспоненциальная связь этого параметра с долговечностью полимера I и его прочностью при растяжении Р  [c.74]

    Однако известно, что размеры переходных слоев не согласуются с размерами сегментов, а временн4я зависимость прочности адгезионных соединений полимеров-с малой продолжительностью сегментальной растворимости. Это дает основание предположить, что сегменты являются не единственными элементами структуры переходных слоев. По-видимому, термодинамические факторы определяют совместимость лишь на начальных стадиях процесса, приводя к толщине переходного слоя, не превышающей размера сегмента. В дальнейшем из-за возникших напряжений и общей неравновесности системы в процесс массопереноса могут вовлекаться макромолекулы и их агрегаты. [c.112]

    Одним из основных вопросов, решаемых при помощи элементоорганических полимеров, является получение материалов с высокой термостойкостью. С точки зрения термодинамики это можно связать с прочностью связей в макромолекуле. Так, прочность связей В—О, В—С, В—N. 51—О и др. выше, чем прочность связи С—С (см. табл. 1). Однако одна энергия связей еще не определяет термостойкость полимеров. Так, на примере полиси-локсанов можно видеть, что энергия связи — не единственный фактор, определяющий их термостойкость. Связь 51—О (89,3 ктл1моль) прочнее связи С—51 ( 7ккал моль), но при нагревании нолисилоксанов до температуры, превышающей 350° С, образуются циклические силоксаны. Это показывает, что связи 51—С остаются неизменными, в то время как связи 51—0 разрываются. Объяснение этому можно найти в механизме реакции, приводящей к перегруппировке связей путем образования промежуточного соединения, что понижает энергетический барьер при разрыве связей 51—О, [c.12]

    Характер продуктов термической деструкции определяется главным образом двумя факторами реакционной способностью деполиме-ризующегося радикала и подвижностью водорода, участвующего в реакции передачи цепи. Все полимеры, содержащие подвижный а-водород (полиакрилаты, полиакрилонитрил, разветвленный полиэтилен и др.), дают незначительное количество мономера исключением является полистирол, у которого радикал стабилизуется сопряжением с бензольным кольцом (с. 244). Большой выход мономера при деструкции полиметилметакрилата и поли-а-метилстирола объясняется тем, что а-водород замещен на метильную группу. Высокая прочность связи С—F в политетрафторэтилене также обусловливает малую скорость передачи цепи и высокий выход мономера. [c.635]

    Кратковременная прочность определяется преимущественно механическим фактором, поскольку за время действия силы необратимые изменения структуры полимера вследствие протекания мсханохимическил реакций минимальны. На длительную Прочность существенное влияние оказывает и химический фактор. [c.344]

    При использовании в качестве усиливающих материалов стеклянного волокна в виде ровницы, матов, тканей в механизме упрочнения большую роль играет структура армирующего материала, его прочностные свойства и ряд технологических факторов [1]. Однако эффекты усиления и в этом случае не могут быть сведены к чисто механическим факторам без учета роли связующего. В таких системах связующее обеспечивает равномерность нагружения и одновременность работы всех волокон в армированном полимере, склеивает волокна и защищает их от воздействия внешней среды [6]. В этом случае первостепенное значение имеют процессы адгезионного взаимодействия полимера и наполнителя. Усиление при использовании однонаправленного армирующего материала может быть объяснено следующим образом [6]. В процессе приложения нагрузки волокна удлиняются и одновременно испытывают поперечное сжатие. При деформации в клеящей среде волокно при поперечном сжатии должно по всей поверхности оторваться от окружающей его пленки или растянуть ее. Таким образом, удлинение при растяжении вызывает в плоскости, перпендикулярной приложенной силе, растягивающее напряжение, препятствующее удлинению волокна. Это напряжение определяется адгезией смолы к поверхности и свойствами самой клеящей среды. Таким образом, при деформации для разрушения структуры необходимо преодолеть не только суммарную прочность армирующих волокон, но и силы, препятствующие поперечному сжатию, которые тем больше, чем прочнее адгезионная связь и чем больше упругие свойства клеящей среды. При этом предполагается, что смола сильно упрочняется в тонких слоях. [c.274]

    Энергия взаимодействия частиц определяется балансом сил притяжения и отталкивания, зависящим в свою очередь от природы СИЛ и расстояния между частицами. Физическая теория устойчивости ионно-стабилизированных КОЛЛОИДНЫХ растворов основана на учете ван-дер-ваальсовых сил притяжения и электростатического отталкивания диффузных слоев адсорбированных ионов. Теория развита отдельно для сильно и слабо заряженных поверхностей в применении к разным дисперсным системам. Представляет ин-терес исследование не только коагуляции, но и значительно менее разработанного механизма пептизации, в частности понижения прочности агрегатов, образованных коагуляцией первичных частиц. Весьма актуальна разработка теории взаимодействия неионно-стаби-лизированных частиц, учитывающая действия сольватации, адсорбционных слоев ПАВ, полимеров и другие факторы устойчивости. Остается открытым вопрос о влиянии кинетических факторов на контактные взаимодействия. [c.8]

    В некоторых случаях для оценки степени смешения определяют дисперсию физических характеристик материала , например предела прочности при растяжении, модуля упругости, истираемости и т. п. К этим методам, однако, следует относиться с очень большой осторожностью, поскольку в ряде случаев вариация физических характеристик полимера может возникать не вследствие неоднородности смеси, а в результате действия совершенно побочных факторов (например, механо- или термодеструкция полимера, нестабильность режима вулканизации и т. п.). [c.194]

    Когезионные свойства полимеров. Силы К. определяют комплекс физич. и физико-химич. свойств вещества агрегатное состояние, летучесть, растворимость, механич. характеристики, поверхностные свойства и т. д. Энергия межмолекулярного взаимодействия и, как следствие, механич. свойства линейных полимеров зависят прежде всего от след, основных факторов 1) типа и числа атомных групп, входящих в состав молекулярной цепи, и 2) геометрич. формы и длины макромолекулы. Эпергия К. различных групп, встречающихся в полимерах, колеблется в довольно широких пределах от 1,6 до 37 кдж/молъ (от 0,4 до 8,7 ккал/молъ) (см. табл. 3). Механическая (когезионная) прочность полимерных материалов обычно хорошо ког)пелирует с энергией К. взаимодействующих групп.Так, полярные карбо-и гетероцепные полимеры при прочих равных условиях (средней длине цепи, полидисперсности, степени кристалличности, разветвленности и т. п.) обладают более высокими прочностными характеристиками, чем неполярные. [c.520]

    Влияние немеханических воздействий на прочность. Под влиянием радиационного излучения, поверхностноактивных веществ и химически активных сред в полимерах развиваются процессы, влияющие на разрушение. Роль указанных воздействий в изменении временнбй зависимости П. т f(a) определяется значением о. При больших о долговечность мала, и внешние факторы не успевают воздействовать на разрушение. По мере уменьшения напряжения т увеличивается, и роль процессов, влияющих на разрушение, становится существенной. [c.117]


Смотреть страницы где упоминается термин Факторы, определяющие прочность полимеров: [c.344]    [c.65]    [c.466]    [c.132]    [c.327]    [c.432]    [c.347]    [c.180]    [c.307]    [c.161]    [c.172]    [c.117]   
Смотреть главы в:

Основы физики и химии полимеров -> Факторы, определяющие прочность полимеров

Основы физики и химии полимеров -> Факторы, определяющие прочность полимеров




ПОИСК







© 2025 chem21.info Реклама на сайте