Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилхолин синтез в нервной системе

    Каков источник огромного избытка ацетилхолина, наблюдаемого при отравлении ФОС Колхоун [26, 28] высказал предположение, что ацетилхолин может образовываться двумя путями — при освобождении из связанного состояния во время синаптической передачи (в обычных условиях он подвергается гидролизу холинэстеразой) и путем его синтеза заново, который не связан с нервной деятельностью. Колхоун показал, что у американского таракана имеют место оба пути в виде последовательных фаз (рис. 42). После отравления ТЭПФ наблюдалось небольшое переходящее повышение содержания ацетилхолина в нервных цепочках, которое исчезало через 4 час. Это было связано с освобождением ацетилхолина в нервной системе, причем снижение уровня ацетилхолина наблюдалось к тому времени, когда повышенная возбудимость сменялась параличом. После этого содержание ацетилхолина постепенно возрастало до огромных размеров и начинало снижаться лишь через 2 суток, когда происхо- [c.290]


    Авитаминоз связан с накоплением в организме пировиноградной кислоты, которая в больших количествах вызывает изменение кислотно-ос-новного состояния организма и нарушение функций центральной и периферической нервных систем, а также нарушение синтеза ацетилхолина вследствие снижения образования АТФ. В результате развивается заболевание нервной системы полиневрит (болезнь бери-бери) — прогрессирующая дегенерация нервов потеря кожной чувствительности, нарушение секреторной и моторной функции желудочно-кишечного тракта, паралич мышц с последующей их атрофией. [c.115]

    Существует ряд доказательств в пользу теории передачи нервных импульсов с помощью химических медиаторов. Основные из них, подтверждающие положение о том, что ацетилхолин — медиатор парасимпатической нервной системы, следующие 1) гидролиз ацетилхолина под воздействием холинэстеразы — процесс, специфический для нервной ткани и протекающий с огромной скоростью 2) скорость гидролиза ацетилхолина совпадает со скоростью передачи нервного импульса 3) холинэстераза локализована исключительно на поверхности аксона 4) торможение действия холинэстеразы физостигмином, эзерином и другими веществами замедляет и прекращает передачу нервных импульсов. Отсюда можно заключить, что в основе передачи нервного импульса по парасимпатическим нервам лежит биохимическая система, приводящая к синтезу и освобождению ацетилхолина и затем к его разрушению. [c.568]

    Ацетилхолин представляет собой сложный эфир уксусной кислоты и холина. Он синтезируется в тканях при помощи специального фермента холинацетилазы. Синтез ацетилхолина в нервной системе протекает при участии глюкозы, распад которой дает ацетильные группы и энергию, необходимую для образования аденозинтрифосфата, обеспечивающего фосфорилирование промежуточных продуктов, необходимых для синтеза. Предпоследним этапом является образование ацетилкоэнзима А. [c.435]

    Тиаминфосфат вместе с пантотеновой кислотой способствуют синтезу ацетилхолина и, следовательно, необходимы для нормального функционирования нервной системы. [c.129]

    В настоящее время используется более 200 органических инсектицидов, предназначенных для того, чтобы уничтожать насекомых, ие нанося существенного вреда людям и живот-ным . Действие многих из этих соединений состоит в ингибировании дыхания клеток другие разобщают синтез АТР и перенос электронов. Хлорированные углеводороды, такие, как ДДТ, действуют на нервную систему, причем механизм этого действия до сих пор еще не установлен. Один из крупнейших классов органических инсектицидов действует на специфический фермент нервной системы — ацетилхолинэстеразу. Нейромедиатор ацетилхолин выделяется из нервных окончаний в области многих синапсов (гл. 16). Ацетилхолин (обладающий большой токсичностью, когда он находится в избыточных количествах) должен быстро разрушаться, в противном случае синапс не будет готов к передаче следующего импульса  [c.104]


    Небольше известно и о пластичности зрелой нервной системы, о привыкании и условных рефлексах, об обучаемости и памяти. Кроме всего прочего, синапс обсуждается как участок пластичности. Обучаемость не зависит от синтеза ДНК, но сопряжена с синтезом РНК и белков. Долговременная и кратковременная память различаются в экспериментах с использованием антибиотиков только в случае долговременной памяти необходим синтез белка. Подобным образом, антисыворотка против S-100 и некоторые белки, специфичные для мозга, блокируют способность к обучению. Нет специальных молекул памяти в основном белковый синтез обеспечивает обычный рост нервной клетки или ее синапсов, активированных при обучении., Из всех нейромедиаторов только катехоламины и ацетилхолин (но не серотонин) имеют отношение к обучаемости, причем гормон гипофиза АСТН в этой связи играет особую роль. [c.350]

    Ацетилхолин и специфическая холинэстераза неравномерно распределены в нервной системе, Так, например, серое вещество полушарий головного мозга содержит (на сухое вещество) 0,39 мг% ацетилхолина и 10,8 единицы холинэстеразы (в условных единицах), а продолговатый мозг — 0,37 мг% ацетилхолина и только 5,6 единицы холинэстеразы (П. А. Коме-тиани). Обычно более высокое содержание холинацетилазы имеется там, где с наибольшей скоростью синтезируется ацетилхолин. Нормальная функция передачи возбуждения холинергическими нервами на воспринимающие ткани связана не только с быстротой синтеза и освобождения ацетилхолина (находящегося в нервной ткани частично в связанном состоянии), но также с быстротой его распада, т. е. гидролиза. Отсюда ясно, что активность холинэстеразы имеет в этом отношении большое значение. [c.411]

    Различия в строении радикала практически не влияют на биохимические свойства фосфолипидов. Так, и фосфатидилэтаноламины (кефали-ны), и фосфатыдшгсермныучаствуютв формировании мембран клеток. Фос-фатидилхолины в большом количестве содержатся в желтках яиц птиц (по этой причине и получили свое название лецитины от греч. le itos— желток), в мозговой ткани человека и животных, в соевых бобах, семенах подсолнечника, зародышах пшеницы. Причем холин (витаминоподобное соединение) может присутствовать в тканях и в свободном ввде, выполняя роль донора метильных групп в процессах синтеза различных веществ, например метионина. Поэтому при недостатке холина наблюдается нарушение обмена веществ, которое приводит, в частности, к жировому перерождению печени. Производное холина — ацетилхолин — является медиатором нервной системы. Фосфатидилхолины широко используются в медицине при лечении заболеваний нервной системы, в пищевой промышленности как биологически активные добавки (в шоколад, маргарин), а также в качестве антиоксидантов. Фосфатидилинозиты представляют интерес как предшественники простагландинов — биохимических регуляторов особенно высоко их содержание в нервных волокнах спинного мозга. Инозит, как и холин, является витаминоподобным соединением (см. главу 3). [c.256]

    АТФ не только обеспечивает энергией мышечное сокращение, но и играет важную роль в деятельности нервной системы. Нервные клетки образуют важное для них химическое вещество — ацетилхолин — с помощью фермента холинацетилазы, и необходимая для его синтеза энергия берется от АТФ. АТФ может быть связан также с ферментными системами, обеспечивающими движение одноклеточных организмов, как это известно, по крайней мере для одного случая, а именно для продвижения сперматозоида к неоплодотворенному яйцу. [c.172]

    Биологическое действие. Холин (витамин В ) является донором метильных групп, используемых при синтезе незаменимой аминокислоты метионина и участвует в обмене белков. Он входит в состав ацетилхолина — химического медиатора нервной системы и таким образом участвует в передаче нервных импульсов. Входя в состав фосфолипидов, осуществляет ли-потропную функцию, т. е. предохраняет печень от ожирения и способствует накоплению в ней гликогена. [c.123]

    Из отдельных аминокислот синтезируются многие биологически активные вещества гормоны, коферменты, биогенные амины. Так, из фенилаланина и тирозина синтезируются гормоны катехоламины (адреналин и норадреналин) и тироксин. Аминокислота аланин входит в состав кофермента ацетилирования (КоА). Метионин используется для синтеза нейропередатчика ацетилхолина, который играет важную роль в функции нервной системы. Применяется он при лечении заболеваний нервной системы и для улучшения восстановительных процессов, в том числе и в спортивной практике. [c.235]

    Химические типы нейромедиаторов (рис. 8.29). В качестве нейромедиаторов в мозге используется несколько соединений синапсы специализируются на одном типе медиатора. Наиболее изученные на сегодняшний день медиаторы-норадреналин (адренергические синапсы) и ацетилхолин (холинер-гические синапсы). Этот факт можно объяснить чисто методическими причинами указанные медиаторы можно исследовать в клетках периферической нервной системы. Например, нейроны симпатической нервной системы являются адренергическими, нейроны парасимпатической нервной системы-холинергическими. Однако в мозге эти два типа синапсов вместе принадлежат лишь небольшой части всех нейронов в качестве нейромедиаторов здесь действует ряд аминокислот (гистамин, глутаминовая кислота, аспарагиновая кислота, глицин и другие). Существенным для синаптической активности является не только синтез, но и процесс инактивации медиатора. На рис. 8.29 представлены основные их типы. [c.121]


    Эфиры фосфорной кислоты и соединения адени-ловой системы, участвующие во внутриклеточном обмене веществ, требуют для своего действия обязательного присутствия солей калия. Дефицит ионов К+ нарушает фосфорилирование. Подобный процесс наблюдается при хирургических вмешательствах, при тиреотоксикозе и ряде других патологических состояний. Ионы К+, На+, Са + участвуют в синтезе АТФ, ацетилхолина. Ионы a + являются ингибитором фермента трансфосфорилазы, принимающего участие в обмене АТФ, пировиноградной кислоты, биосинтезе никотиновой кислоты и т. д. Известна роль ионов a + в функциях нервной, сердечно-сосудистой систем, пищеварении, мышечном сокращении и других процессах. [c.175]

    Ацетилхолинэстераза, а также холинацетилаза (фермент, катализирующий синтез ацетилхолина) необходимы для передачи нервных импульсов. Блокирование этой системы приводит к смерти. [c.299]

    Нервные импульсы, вызывающие секрецию АДГ, являются результатом действия ряда различных стимулирующих факторов. Главный физиологический стимул — это повышение осмоляльности плазмы. Его эффект опосредуется осморецепторакш, локализованными в гипоталамусе, и барорецепторами, находящимися в сердце и других отделах сосудистой системы. Гемодилюция (снижение осмоляльности) оказывает противоположное действие. К другим стимулам относятся эмоциональный и физический стресс и воздействие фармакологических агентов, в том числе ацетилхолина, никотина и морфина. В большинстве случаев усиление секреции сочетается с повышением синтеза АДГ и нейрофизина II, поскольку при этом не происходит истощения резервов гормона. Адреналин и агенты, вызывающие увеличение объема плазмы, подавляют секрецию АДГ аналогичным эффектом обладает этанол. [c.184]


Смотреть страницы где упоминается термин Ацетилхолин синтез в нервной системе: [c.411]    [c.113]    [c.567]    [c.434]   
Биологическая химия Издание 3 (1960) -- [ c.410 , c.411 ]

Биологическая химия Издание 4 (1965) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилхолин

Синтез системы



© 2025 chem21.info Реклама на сайте