Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок одноклеточных организмов

    Спектр продуктов, образующихся методами биотехнологии, необычайно широк и разнообразен. Целевыми продуктами биотехнологических производств могут быть интактные клетки. Одноклеточные организмы используют для получения биомассы, являюшейся источником кормового белка. Клетки, особенно в иммобилизованном состоянии, выступают в роли биологических катализаторов для процессов биотрансформации. [c.32]


Таблица 6,3. Состав белка одноклеточных организмов, обитающих в активном иле Таблица 6,3. <a href="/info/586714">Состав белка одноклеточных организмов</a>, обитающих в активном иле
    Белок одноклеточных организмов (БОО) — термин, принятый для обозначения белковых продуктов, синтезируемых монокультурой микробных клеток и использующихся в качестве пищевых добавок или корма для скота. Вопрос об использовании микробной биомассы в качестве источника белка рассматривается вполне серьезно. Это связано не только с дефицитом продовольствия в общемировом масштабе, но и с тем, что содержание белка в большинстве микроорганизмов весьма велико на его долю приходится примерно 60—80% сухой массы клетки. Кроме того, благодаря высокому содержанию метионина, лизина, витаминов и важных минералов БОО обладает более высокой пищевой ценностью, чем некоторые виды пищи растительного и животного происхождения. Но широкое применение БОО сдерживается по ряду причин. [c.301]

    Чтобы отличать такой тип продуктов от белков высших многоклеточных животных и растений, для микробного белка придумано специальное название — белок одноклеточных организмов (БОО). Производство его связано с крупномасштабным выращиванием определенных микроорганизмов, которые собирают и перерабатывают в пищевые продукты. В основе лежит технология ферментации — ветвь бродильной промышленности и производства антибиотиков. Чтобы осуществить возможно более полное превращение субстрата в биомассу микробов, тре- [c.116]

    О мерах безопасности при производстве белка одноклеточных организмов [c.118]

    Попытки решения тех проблем, которые указаны в первом примере, привели к интенсивному развитию исследований и разработке методов получения белка одноклеточных организмов. Для решения второй задачи потребовалось создание эффективных способов превращения возобновляемых местных источников биомассы в этанол и/или метан. Для решения третьей из упомянутых проблем сначала попытались использовать синтетические полимеры, но не получили желаемого результата тогда основные усилия были направлены на поиски и производство биополимеров, по своим свойствам пригодных для повышения нефтедобычи. [c.397]

    У высших организмов Д.-сложный комплекс физиол. и биохим. процессов, в к-ром можно выделить ряд осн. стадий. I) внеш. Д. поступление Oj из среды в организм, осуществляемое с помощью спец. органов Д. (легких, жабр, трахей и т.д.) или через пов-сть тела (напр., у кишечнополостных) 2) транспорт О2 от органов Д. ко всем др. органам, тканям и клеткам у большинства животных эта ф-ция обеспечивается кровеносной системой при участии спец. белков переносчиков кислорода (гемоглобин, миоглобин, гемоцианин и др.) 3) тканевое, или клеточное, Д. собственно биохим. процесс восстановления О2 в клетках при участии большого числа разных ферментов. Д. многих, в первую очередь одноклеточных, организмов сводится к клеточному Д., а стадии 1 и 2 обеспечиваются диффузией Ог- [c.124]


    Кроме того, те или другие животные могут использовать белки одноклеточных и многоклеточных организмов (бактерии, дрожжи, грибы), рост которых превосходно поддается регулированию, а состав очень однороден. Средствами биотехнологии состав таких белков можно видоизменять по желанию. [c.28]

    Дрожжи — живые одноклеточные организмы (грибки), размножающиеся в сахаристой среде для их жизнедеятельности нужно, чтобы среда содержала соли аммония (как источник азота для синтеза ими белков своего тела), соли фосфорной кислоты и еще некоторые минеральные соли. Можно, однако, раздавить и таким образом убить дрожжи (Бухнер) или подсушить их и экстрагировать водой (А, Н. Лебедев), и все равно их сок или экстракт оказывает каталитическое действие и вызывает такое же превращение сахаров в спирт, как и живые дрожжи. Ферментный препарат, сбраживающий сахара, был назван зимазой. Оказалось, что он содержит целый комплекс ферментов, из которых многие присутствуют и в клетках животных и растений, катализируя в процессе клеточного дыхания те же превращения сахаров (глюкозы или фруктозы), что и в первой фазе брожения. Названия этих ферментов приведены в схеме на стр. 464. Строение ферментов рассмотрено в отдельной главе книги II. [c.462]

    Химический состав одноклеточных организмов. Вес сырой биомассы бактерий определяют после отделения клеток от жидкой питательной среды путем центрифугирования. Осевшая клеточная масса содержит 70-85 % воды таким образом, сухая биомасса составляет 15-30 % от сырой массы. Если клетки содержат много запасного материала (липиды, полисахариды, полифосфаты или серу), доля сухой массы больше. Сухое вещество бактерий -- это в основном полимеры [белки (50%), компоненты клеточной стенки (10-20%), РНК (10-20%), ДНК (3%)], а также липиды (10%). Десять важнейших химических элементов представлены в клетках бактерий примерно следующим образом углерод — 50 %, кислород — 20 %, азот — 14 %, водород — 8 %, фос( юр — 3 %, сера — 1 %, калий — 1 %, кальций — 0,5 %, магний — 0,5 % и железо — 0,2 % [64]. [c.10]

    Создание новых методов переработки и хранения пищевых продуктов, получение пищевых добавок (например, полимеров, продуцируемых микроорганизмами аминокислот), использование белка, синтезируемого одноклеточными организмами, и ферментов при переработке пищевого сырья [c.14]

    Следовательно, ферменты по своему каталитическому действию чрезвычайно специфичны, или селективны. Так как ферменты являются белками, высокая степень специфичности обусловлена главным образом последовательностью аминокислотных остатков в белковой цепи. Следовательно, организм должен быть способен синтезировать сотни определенных белковых молекул, каждая из которых обладает собственной, неизменной последовательностью аминокислотных остатков. Каждый фермент может содержать сотни остатков аминокислот, и каждая клетка должна содержать полную информацию, необходимую для пополнения запасов любого из ее ферментов, когда это требуется. Казалось бы, это слишком сложная задача для простого одноклеточного организма, каким является бактерия, и даже для такого сложного, состоящего из многих клеток создания, каким является человек, однако природа создала остроумную схему, следуя которой даже низшие организмы легко решают ее. [c.52]

    Но они обладают поразительной способностью синтезировать новые ферменты, что позволяет им не просто приспосабливаться к новым условиям, но и извлекать из этого максимальную пользу. Поскольку они являются одноклеточными организмами, они не нуждаются в гормонах и их обмен веществ связан с делением клеток. Когда бактерии не делятся, у них осуществляется как синтез, так и распад белка, однако во время экспоненциального роста имеет место только синтез, но не распад белка. У взрослых многоклеточных организмов ситуация совсем иная. Во многих органах митоз происходит редко, и синтезированный сверх необходимого белок должен быть удален из организма, так что обмен белка в этом случае является обычным и необходимым явлением. Когда бактерии в новых внешних условиях начинают синтезировать новые ферменты, то количество ненужных старых ферментов быстро уменьшается в результате деления клеток. Можно показать, что количество определенных ферментов в различных органах млекопитающего будет меняться в зависимости от состава пищи, но куда более сложно выяснить, происходит ли это в результате увеличения скорости синтеза, или уменьшения скорости распада ферментов, или за счет действия этих обоих ферментов. В случае же бактерий увеличение скорости синтеза фермента в результате индукции или дерепрессии может быть просто и наглядно объяснено с помощью модели оперона. [c.75]

    Если сравнить ферментативные процессы, протекающие у животных, высших растений и микроорганизмов, то можно заметить сходство, даже единство, лежащее в основе жизнедеятельности самых разнообразных живых существ. Считают, что процессы, идущие в животной клетке (например, клетке мозга), растительной (например, меристемы) или железобактерии, весьма близки и их метаболизм отличается лишь в деталях. Конечно, правильно, что такие процессы, как синтез белка, перенос электронов, фосфорный обмен или цикл трикарбоновых кислот, как и множество других явлений, сходны у самых разнообразных многоклеточных и одноклеточных организмов. Однако наряду с этим необходимо всегда иметь в виду характерные, специфические особенности обмена веществ и, следовательно, ферментативных процессов у микроорганизмов, которые способны и отличными способами реагировать на физические и химические воздействия, и осуществлять сложные каталитические реакции таких типов, которые никогда не выполняются животными и высшими растениями. [c.113]


    Белками называются соединения, в состав которых, кроме органогенов— углерода, водорода, кислорода и азота,—иногда входят еще сера и фосфор. Белки играют исключительно важную роль в жизни как животных, так и растений. Составляя главную массу протоплазмы одноклеточных организмов, белки, исключая воду и минеральный скелет, представляют и главную массу веществ, из которых состоят высшие животные организмы. В виде коллоидных растворов, белки содержатся [c.412]

    В пищевой промышленности это создание новых методов переработки и хранения пищевых продуктов, получение пищевых добавок (например, полимеров, продуцируемых микроорганизмами, аминокислот), использование белка, синтезируемого одноклеточными организмами, и ферментов при переработке пищевого сырья. Применение ферментов для усовершенствования средств диагностики, создание тестовых систем на основе ферментов, использование микроорганизмов и ферментов при производстве сложных лекарств (например, стероидных), синтез новых антибиотиков и их использование в терапии инфекционной патологии животных. [c.252]

    В отличие от сложных белков, белки одноклеточных организмов (БОО) используются как пищевая добавка. Обогащением белковыми добавками на основе БОО улучшают качество растительного белка. Эти добавки повышают содержание витаминов, микроэлементов, а главное — аминокислот, несинтезируемых многими растениями. Производство пищевых белков измеряется миллионами тонн в год и постоянно растет. Микробиологический синтез белка, продукт которого представляет собой инактивированную массу клеток, — основной [c.429]

Рис. 1П-1. Общий вид установки биосинтеза белка одноклеточного организма /—смеситель 2—стерилизатор 3—воздушный фильтр 4—сепаратор (центрифуга или другое устройстЬо) 5 — промыватель б —сушилка. Рис. 1П-1. Общий вид установки биосинтеза белка одноклеточного организма /—смеситель 2—стерилизатор 3—<a href="/info/844431">воздушный фильтр</a> 4—сепаратор (центрифуга или другое устройстЬо) 5 — промыватель б —сушилка.
    Процесс получения белка одноклеточного организма, представленный на лицензиро- [c.124]

    Как получение химических соединений и пищевых добавок путем брожения, так и синтез антибиотиков всегда велись в асептических условиях, но некоторые современные процессы (например, образование белка одноклеточными организмами) осуществляют в еще более жестком режиме. Обеспечение таких особых условий —многоплановая задача. Она решается инже-нерами-химиками и микробиологами (подробнее об этом будет рассказано в гл. 10). С другой стороны, использование микроорганизмов при переработке отходов (гл. 6) не требует создания стерильных условий напротив, вообще говоря, чем больше разных микроорганизмов принимает в этом участие, тем лучше. Впрочем, при планировании и создании заводов по переработке отходов инженеры-химики и микробиологи столкнулись с проблемами иного круга. Процесс минерализации органических отбросов, основанный на использовании активного ила, был разработан в 1914 г. С тех пор он был существенно модернизирован, стал более сложным и производительным и используется сегодня во всем мире для переработки стоков. [c.13]

    СЯ ЯСНО, что при переработке всех этих отходов мы можем получить многие тонны активного ила. В процессе переработки отходов при участии микроорганизмов образуется много микробного белка, который можно повторно использовать как корм для скота, поскольку 30—407о сухой массы выросших клеток — это неочищенный белок. На рис. 6.16 описан метод экстракции белка из активного ила, а в табл. 6.3 приведен сО став белка одноклеточных организмов (БОО) из того же источника. Тяжелые металлы, обнаруженные в отстое сточных вод (например, медь из отходов свиноводства, где ее присут ствие обусловлено применением концентратов меди для корм-  [c.272]

    Получение кормового белка одноклеточных организмов, анаэробное сбраживание, метаногенерация [c.231]

    Основной областью применения метанола является получение формальдегида (свыше 40 %). Метанол также используется в синтезе уксусной кислоты, сложных эфиров (в частности, диме-тилфталата), простых эфиров (МТБЭ, МТАЭ и др.), метилгало-генидов, аминов, ионообменых смол, в качестве растворителя, экстрагента и добавки к моторным бензинам. В дополнение к традиционным областям потребления значительными могут стать в будущем потребности в метаноле в новых областях, таких, как энергетика, синтез белка, продуцируемого одноклеточными организмами. [c.838]

    Миллионы лет назад клетки образовались из более простых структур, вероятно, из древних белков, нуклеиновых кислот и их комплексов. Остается неизвестным, что же послужило предпосылкой этой стадии в эволюции материи. Возможно, для этого были необходимы какие- о специальные полимерные структуры, в настоящее время на -Земле отсутствующие. Не исключено также, что они возникли из структур, похожих на современные белки и нуклеиновые кислоты, но были необходимы специфические условия для того, чтобы они смогли организоваться в примитивные клетки, способные к воспроизводству. И наконец, не исключено также и то, что и необходимые вещества, и специальные условия существуют до сих пор где-либо на Зем.че. Однако в настоящее время невозможно наблюдать образование клеток даже при использовании современных экспериментальных подходов из-за присутствия в о кружающей среде огромного числа одноклеточных организмов и их непрерывного воспроизводства. Теория зарождения жизни до сих пор продолжает оставаться одной из наиболее загадочных проблем биологии. Эта теория должна ответить в первую очередь на два основных вопроса первый — каким образом набор полимерных и низкомолекулярны.ч веществ появился в ходе химической эволюции второй — как эти вещества сумели объединиться в первые живые клеточные организмы. [c.20]

    Ферментеры, или биореакторы, представляют собой камеры, в которых в жидкой или на твердой среде выращивают микроорганизмы. Процесс, происходящий в ферментере, называется ферментацией. Термин ферментация первоначально применялся только к анаэробным процессам, однако сейчас он используется более щироко и включает все процессы, как аэробные, так и анаэробные. На рис. 12.16 изображен типичный ферментер. Это довольно сложное техническое сооружение, поэтому необходимо потратить некоторое время для изучения его устройства. Не забывайте также о проблемах, возникающих при расщирении масштабов производства, которые бьши перечислены в предыдущем разделе. Содержимое ферментеров во время работы, как правило, тем или иным способом перемещивается. Например, при производстве белка одноклеточных прутина компанией I I перемещивание достигается с помощью воздуха, подаваемого с высокой скоростью со дна сосуда. Продуктом являются либо сами клетки (биомасса), либо какой-то полезный клеточный метаболит. Все операции должны проводиться в стерильных условиях, чтобы избежать загрязнения культуры. Кроме того, необходимо обеспечить возможность поддержания в стерильном состоянии всех вводных и выводных отверстий ферментера. Ферментер и среду стерилизуют перед использованием вместе или раздельно. Исходные культуры организма, который должен использоваться в процессе ферментации, хранят в неактивной форме (например, в замороженном состоянии). Пробу активируют, наращивают в достаточном объеме с использованием асептических методов (наращивание) и затем добавляют в ферментер (инокуляция). В ферментере организм растет и размножается, используя питательную среду. [c.66]

    Обязательным процессом, происходящим при клеточном делении одноклеточных организмов, является репликация ДНК. Это справедливо также практически во всех случаях клеточного деления многоклеточных организмов. Обычно процесс требует также увеличения количества РНК и белковых молекул. Все эти биополимеры могут быть синтезированы из соответствуюн их мономеров внутри клетки в соответствии с клеточными программами. Синтез белков и РНК de novo обычно необходим и для функционирования неделящихся клеток. Кроме того, в таких клетках может также происходить синтез ДНК для того, чтобы реставрировать повреждения молекул ДНК, полученные вследствие действия различных химических и физических факторов, — так называемая репарация ДНК. Все эти процессы должны быть обеспечены соответствующими мономерами. Мономеры могут быть получены как из клетки, так и из окружающей среды. Получение мономеров внутри клетки возможно двумя противоположными способами биосинтезом, начинающимся из простых химических соединений, и гидролизом биополимеров, захваченных организмом. В обоих случаях необходимый материал должен быть перенесен из окружающей среды, а соответствующие химические превращения должны совершиться внутри клетки. Таким образом, основное свойство жизни требует, чтобы в клетке непрерывно проис.кодмли определенные химические превращения. Это, как правило, должно сопровождаться, во-первых, доставкой в клетку внешних материалов и, во-вторых, удалением из клетки побочных продуктов этих превращений. Следовательно, наследственные программы, присущие живым организмам, не могут быть реализованы без помощи ряда биохимических процессов, другими словами, без метаболизма. [c.21]

    Никакой, даже самый примитивный, из известных в настоящее время живых организмов в сколь угодно стабильных внешних условиях не мог бы функционировать, если бы в нем одновременно и несбалансированно протекали. все запрограммированные биохимические процессы - транскрибировались все гены, транслировались все образовавшиеся информационные РНК, шли с нерегулируемой скоростью все присущие этому организму процессы синтеза и деградации низкомолекулярных соединений и биополимеров. Ясно, например, что интенсивность биосинтеза нуклеотидов и незаменимых аминокислот должна быть скоординирована с интенсивностью биосинтеза нуклеиновых кислот и белков, поскольку в противном случае бесполезно растрачивались бы необходимые для производства этих мономеров сырьевые и энергетические ресурсы клеток. На самом деле живые организмы живут в непрерывно меняющихся внешних условиях и должны, кроме того, реагировать на изменения, происходящие в окружающей их среде. Так, появление в среде, на которой выращиваются бактерии, какой-либо дефицитной аминокислоты должно сопровождаться снижением уровня ее биосинтеза клетками. Появление в среде нетипичного источника углерода и энергии должно стимулировать процессы, связанные с доставкой такого вещества в клетки и его усвоением. Даже цростейшие одноклеточные организмы должны располагать регуляторными механизмами, позволяющими в определенном диапазоне нивелировать действие возникающих в окружающей среде неблагоприятных внешних химических и физических факторов, таких, как появление агрессивных химических веществ, повышение температуры, интенсивное УФ-излучение. [c.419]

    Мы можем закончить статью утверждением, что гены — это неделимые единицы наследственности вирусов, одноклеточных организмов и многоклеточных растений и животных. Они представляют собой, по-видимому, неуклеопротеиды и служат моделями, с которых копируются новые гены, белки, не являющиеся генами, и другие крупные молекулы, причем все они приобретают такую форму, какую им придает ген. [c.165]

    Каждая клетка животного, растительного и одноклеточного организма содержит в качестве существеннейшей составной части белки, или протеины, строящие ферменты, органеллы и в целом протоплазму клетки. Частицы простейших организмоподобпых образований — вирусов — также состоят из белковой оболочки и нуклеиновых кислот. [c.653]

    В соответствие с этой концепцией были предложены многочисленные методы, способные обнаружить метаболическую активность микроорганизмов. По классификации Имшенецкого (1970), все предложенные методы могут быть разделены на прямые и косвенные. К последним относятся химические анализы грунта и атмосферы планеты, астрономические методы и др. Прямые методы основаны на передаче обзорных панорам в случае поиска макроформ и констатации роста и размножения одноклеточных организмов. Прямые методы могут быть разделены на наиболее надежные, заслуживающие внимания, и менее надежные. К наиболее надёжным Имшенецкий (1970) относит определение нарастания биомассы нефелометрия, УФ-фотометрия, количественное определение железонор-фириповых белков и АТФ, определение количества 14 СО-2, выделяющегося в процессе утилизации меченых питательных веществ, содержащихся в среде, измерение pH и Eh культуральных жидкостей. Заслуживают внимания такие методы, как определение оптической активности, количественное определение флавинов, белка, нуклеиновых кислот и аминокислот, обнаружение фосфатазной активности, а также манометрия. Менее надежными следует признать методы с применением 0, 0, калориметрию, определение митогенетического излучения. [c.108]

    Та типичная клетка, которую мы до сих пор рассматривали и которая изображена схематически на фиг. 4, представляет собой клетку эукариотического типа. Такая клетка является основной единицей не только всех высших, многоклеточных животных и растений, но также и таких низших, одноклеточных организмов, как грибы, простейшие и водоросли. Изобретение в 30-х годах электронного микроскопа, разрешающая способность которого Б сто раз превышает разрешающую способность светового микроскопа, и последующее появление более тонких методов окрашивания и приготовления препаратов дали возможность разглядеть гораздо больше деталей строения эукариотической клетки. На фиг. 20 показана электронная микрофотография ядра и окружающей его цитоплазмы клетки летучей мыши. На этой фотографии хорошо видна двухслойная структура ядерной мембраны, а также отверстия, или поры, в этой мембране, через которые ядро сосбшается с цитоплазмой. Можно видеть, что находящиеся в цитоплазме митохондрии, как и ядро, окружены мембраной. Но самсе важнее, что те цитоплазматические структуры, которые на основании данных световой микроскопии принято было называть вакуолями , оказались на электронных микрофотографиях сетью удлиненных, тонких образованных мембранами структур. Эта сеть, названная ждоплазматической сетью, представляет собой сложную систему впячиваний наружной мембраны. Таким образом, полость вакуоли на самом деле непосредственно связана с внеклеточной средой. Темные точки, которые, как можно видеть, выстилают эндоплазматическую сеть, — это рибосомы, маленькие частипы, состоящие примерно из одинаковых количеств белка и РНК. В рибосомах локализовано около двух третей всей цитоплазматической РНК. [c.44]


Смотреть страницы где упоминается термин Белок одноклеточных организмов: [c.15]    [c.117]    [c.118]    [c.15]    [c.117]    [c.118]    [c.272]    [c.231]    [c.34]    [c.224]   
Смотреть главы в:

Молекулярная биотехнология принципы и применение -> Белок одноклеточных организмов

Биотехнология -> Белок одноклеточных организмов

Биотехнология - принципы и применение -> Белок одноклеточных организмов


Молекулярная биотехнология принципы и применение (2002) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте