Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность металлов сильных оснований

    Исключение составляют анионные системы, в которых в начальной стадии протекают реакции, заведомо приводящие к дезактивации инициатора. К ним относятся отщепление галогенида металла при анионной полимеризации ненасыщенных хлорсодержащих мономеров , образование в системе метилметакрилат — литийбутил метилата лития, пассивного по отношению к данному мономеру - и др. С изложенной точки зрения известные факты повышения эффективности инициирования анионной полимеризации полярных мономеров, обусловленной присутствием каталитических количеств сильных оснований Льюиса (это показано, в частности, на примерах метилметакрилата и акрилонитрила г. зз) можно считать результатом изменения относительного участия инициатора в процессах олигомеризации и полимеризации. Для реакций олигомеризации наиболее вероятны направления, включающие внутримолекулярное комплексообразование с последующей циклизацией например  [c.31]


    Адсорбционная же теория получила поддержку на том основании, что большинство металлов, относящихся к пассивным по первому определению, — переходные металлы периодической системы, т. е. они содержат электронные вакансии или непарные электроны в (1 оболочках атома. Наличие непарных электронов объясняет образование сильной связи с компонентами окружающей среды, особенно с Ог, который также содержит непарные электроны. Вследствие этого, кроме ионной связи, имеется парная электронная или ковалентная связь. Переходные металлы к тому же имеют высокую теплоту сублимации по сравнению с непереходными металлами. Это свойство благоприятствует адсорбции окружающей среды, так как атомы металла стремятся остаться в своей решетке, тогда как образование окисла требует, чтобы атомы металла покинули свою решетку. Высокие энергии адсорбции Ог па переходных металлах соответствуют образованию химической связи и поэтому такие пленки называются хемосорбиро-ванными в противоположность пленкам с более низкой энергией, которые называются физически адсорбированными. На непереходных металлах, например Си и 2п, окислы образуются немедленно, и хемосорбированные пленки, имевшиеся на поверхности металла, не могут долго существовать. На переходных металлах существование хемосорбированных частиц значительно продолжительнее. Однако все хемосорбированные пассивные пленки реагируют во времени с металлом, который покрывается такими соединениями, как, например, окислы, и соединения менее ответственны за пассивность, чем метастабильные хемосорбированные пленки, которые образовались вначале и продолжают образовываться на испытываемом металле в порах окисла. [c.70]

    Горизонтальная кривая располагается при потенциале +0,45 в и сопровождается сильным колебанием потенциала (область 3) Это странное поведение, конечно, обусловливается тем обстоятельством, что становится возможным образование твердой окисной пленки на металле в порах, пронизывающих толщу кристаллов. Расчет, основанный на более ранних измерениях Фладе (касающихся действительно потери пассивности), по-видимому, указывает на то, что в 10%-ной На 501 Для достижения пассивного состояния требуется потенциал в +0,580 в . Однако в порах между кристаллами кислотность значительно ниже действительно, значение pH равно 2,2, которое допускает образование окисла при +0,450(3. Если, однако, железо покрывается окисной пленкой, анодное растворение практически прекращается, и сила тока резко падает до пренебрежимой величины. В отсутствие тока растворение кристаллов сульфата Ее может происходить без какой-либо компенсации за счет образования новых кристаллов, так что железо вскоре снова подвергается действию кислоты (почти полностью 10%-ной) когда эта кислота достигает металла, то уже образованная окисная пленка будет почти немедленно исчезать в результате восстановительного растворения, которое при этом потенциале является возможной реакцией. Следовательно, железо на мгновение оказывается без окисной пленки и следовательно может снова проходить сильный ток, приводящий к образованию свежего окисла в порах, вызывая новое падение тока. Этим объясняются сильные колебания тока. Колебания продолжаются до потенциала приблизительно +0,580 в и затем прекращаются, так как выше этого значения окисная пленка становится стабильной даже в присутствии 10%-ной кислоты — как это уже установлено. Выше новой области потенциалов (область 4) сила тока изменяется очень мало, будучи лишь достаточной, для того чтобы способствовать непосредственному растворению окисла кислотой, это будет вызываться (стр. 214) тем, что непосредственное растворение (совместно с восстановительным растворением) происходит чрезвычайно медленно. Для многих практических целей может быть указано, что выше этой области пассивный электрод ведет себя подобно платине или другому благородному металлу. Почти (полное) отсутствие тока продолжается приблизительно до 1,66 в, когда становится возможным выделение кислорода (область 5). Величины силы тока и скорости коррозии в пассивной области обсуждены в статьях 115], [16]. [c.218]


    Очень большое практическое значение пассивности, часто определяющее возможность получения сплавов, химически стойких в агрессивных средах, вызвало огромное количество исследований, посвяш енных изучению пассивного состояния. Если отбросить некоторые несущественные различия, высказываемые на основании сопоставления экспериментальных данных, то результаты наблюдений можно обобщить, сказав, что пассивное состояние обусловлено образованием очень тонкой пленки окисла, представляющего собой отдельную фазу, или слоя хемисорбированного кислорода, а может быть и других частиц. В дальнейшем мы рассмотрим эти определения более подробно. Пока же ограничимся представлением о некотором кислородном барьере , образующемся на поверхности металла в подходящем окислителе и сильно тормозящем анодный процесс [6]. [c.195]

    При высоких плотностях тока, сильно удаленных от состояния равновесия, доказательство, основанное на энергетике системы, становится недействительным. Раствор, в котором анод свободно растворяется при низкой плотности тока, обраауя, скажем, растворимую сернокислую соль, может вызвать пассивность при высоких плотностях тока. Если бы, например, ионы SO4" иссякли, то следовало бы ожидать образования пленки твердой гидроокиси (или окиси при недостатке воды). Эта пленка, вероятно, послужила бы препятствием дальнейшему коррозионному воздействию, если даже позже ионы SO4" появились бы снова в избытке. После перехода в пассивное состояние имеются две возможности если э. д. с. слишком мала, чтобы доставлять энергию для выделения кислорода, то сила тока может упасть до очень низких значений при более высоких значениях э. д. с. прохождение тока в большинстве случаев будет продолжаться (хотя, например, в случае алюминия пленка на аноде не является проводником) однако ток будет тратиться главным образом на выделение кислорода, хотя обычно некоторая небольшая коррозия металла будет при этом происходить. Таким образом Лобри де Брюин нашел, что в то время как на аноде из активного железа 99% тока тратится на коррозию, после наступления пассивности только 1% тратится на коррозию и 99% — на выделение кислорода. [c.27]

    Тщательность обработки поверхности, например тонкая шлифовка и тем более полировка, повышает устойчивость против коррозии [8]. Для сплавов, находящихся в активном состоянии и, следовательно, в данных условиях корродирующих с более или менее заметной скоростью, влияние полировки, естественно, будет сказываться на повышении коррозионной устойчивости только на начальных стадиях. Положительное влияние тщательной обработки поверхности гораздо сильнее выражено при атмосферной коррозии и, особенно, в условиях нахождения сплава в пассивном состоянии. В указанных случаях начальный инкубационный период коррозии может растягиваться на неопределенно продолжительное время. Поэтому повышение устойчивости в начальный период для металла, находящегося в пассивирующих условиях (например, для стали при атмосферной коррозии), может соответствовать значительному повышению общей коррозионной устойчивости металла в данных условиях. Так, например, на основании исследования влияния характера обработки поверхности нержавеющих сталей XI3 и 1Х18Н9Т на скорость их коррозионного разрушения в растворе хлористого натрия можно в первом [c.251]


Смотреть страницы где упоминается термин Пассивность металлов сильных оснований: [c.55]    [c.42]   
Теоретическая электрохимия (1959) -- [ c.182 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы пассивность

Основание сильные

Пассивность

Пассивные металлы



© 2025 chem21.info Реклама на сайте