Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика коррозионного разрушения

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]


    Электрохимическая коррозия встречается чаще других видов коррозионного разрушения и наиболее опасна для металлов. Она может протекать в газовой атмосфере, когда на поверхности металла возможна конденсация влаги (атмосферная коррозия), в почвах (почвенная коррозия), в растворах (жидкостная коррозия). Электрохимическая коррозия подчиняется законам электрохимической кинетики. Скорость ее можно определить на основе закона Фарадея. [c.486]

    Объемный метод широко используют в лабораторной практике, когда нужно установить кинетику коррозионного разрушения металла или сплава в кислотах или щелочах, окисляющих ионом водорода. Измеряя объем водорода через равные промежутки времени, можно выяснить характер изменения скорости коррозии и установить способность металла к самопроизвольному пассивированию в данных условиях. [c.44]

    Одновременно с изучением кинетики коррозионного разрушения исследовали влияние режима термической обработки фосфат- [c.76]

    Исследование кинетики коррозионного разрушения фосфатных материалов в хлористом водороде показало, что скорость их коррозии при указанных условиях составляет — 50 мг см в год. [c.77]

    КИНЕТИКА КОРРОЗИОННОГО РАЗРУШЕНИЯ МЕТАЛЛА ОКОЛОШОВНОЙ ЗОНЫ [c.83]

    КИНЕТИКА КОРРОЗИОННОГО РАЗРУШЕНИЯ МЕТАЛЛА ПОДЗЕМНОГО ТРУБОПРОВОДА [c.1]

    Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия [числитель правой части уравнения (1)1, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика (учение о скоростях) коррозионных процессов. [c.11]

    Приведенные результаты кинетики механохимического разрушения реализуются в основном при проведении коррозионно-усталостных испытаний, поскольку в реальных конструкциях номинальные напряжения не превосходят предела текучести металла От (в среднем Стн 0,6 ат). Тем не менее, результаты анализа могут быть использованы при оценке долговечности реальных конструктивных элементов. Наличие различного рода концентраторов способствует реализации в локальных образцах упруго- [c.91]

    Далее рассмотрим кинетику механохимического разрушения конструктивных элементов в условиях мягкого нагружения (рис.2.3). Если в цилиндре номинальные напряжения Стн не превышают предела текучести, то в условиях циклического нагружения на воздухе он должен иметь неограниченную долговечность. Однако, при работе цилиндра в коррозионных средах картина изменяется. По мере коррозионного растворения стенки цилиндра напряжения в нем возрастают и когда они превысят предела [c.92]


    В зависимости от коррозионной стойкости характерных зон сварного соединения с мягкой прослойкой возможна реализация с доминантным механохимическим разрушением по мягкому металлу зоны термического влияния или основному металлу (рис.4.25). Из этих схематизированных случаев разрушения большую опасность представляют те, когда механохимическое разрушение локализуется в металле мягкой прослойки (рис.4.25,б,д). В механическом плане модели разрушения, представленные на рис.4.25,а,б,в,д, практически адекватны. Поэтому достаточно рассмотреть кинетику механохимического разрушения образца с мягкой прослойкой в предположении соответствия со схемой, представленной на (рис.4.25,а). Как и ранее, положим, что механически неоднородный агрегат состоит из идеально-упруго-пластических металлов (а > а > а ). Начальные напряжения в образце, создаваемые постоянной во времени растягивающей силой, не превосходят предела текучести мягкого металла К<а ). [c.252]

    Гутман Э.М., Зайнуллин P. . Кинетика механохимического разрушения и расчет на прочность сосудов давления, работающих в коррозионных средах // Пути совершенствования, интенсификации и повышения надежности аппаратов основной химии. Тезисы Всесоюзн. конф. /Сумы.-1982.-с.139. [c.400]

    Химическая коррозия - это прямое взаимодействие металла с коррозионно агрессивными примесями в топливах. Окисление металла и восстановление окислителя протекают в одну стадию по законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются разрушение металлических деталей топливного оборудования меркаптанами, сероводородом, лопаток турбин - продуктами неполного сгорания топлив и т.д. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала. Основную роль играет электрохимическая коррозия, радикальной защиты от которой не существует и борьба с которой сопряжена с огромными затратами. [c.55]

    Электрохимическая коррозия — наиболее распространенный вид коррозионного разрушения металлов и сплавов. Основные законы, по которым протекает электрохимическая коррозия, — законы электрохимической кинетики, поэтому именно этот вид коррозионного разрушения металлов является важнейшим объектом электрохимических исследований. [c.410]

    Устанавливая принципиальную возможность коррозионного разрушения, термодинамика ничего не говорит о его скорости. Между тем с практической точки зрения именно скорости коррозионного процесса принадлежит решающее значение. Чтобы выяснить роль факторов, от которых зависит скорость саморастворения металлов, следует привлечь методы электрохимической кинетики. [c.243]

    Закономерности электрохимической кинетики, т. е. кинетики процессов. протекающих на границе фаз электрод — электролит, изучают в целях совершенствования и интенсификации электролиза, установления оптимальных условий электрохимического получения чистых продуктов электродных реакций — химических веществ, ряда цветных, легких, благородных, редких металлов и сплавов. Эти исследования способствуют предотвращению коррозионного разрушения металлоконструкций, использованию наиболее эффективных методов электрохимической защиты изделий, осуществлению оригинальных электрохимических, физико-химических, аналитических методов изучения продуктов реакций и т. п. [c.18]

    В начальный период времени скорость окисления максимальна и затем уменьшается во времени. Если 1 < < 2, то окисление определяется скоростью диффузии частиц и скоростью окисления металла кислородом (область смешанной кинетики). Предполагается, что при выполнении указанного условия процесс окисления сопровождается постоянным разрушением оксидной пленки, так как Уо > V m- При п >2 происходит изменение параметров диффузии через пленку, связанное с появлением значительных напряжений или структурными изменениями пленки. При п = 2 скорость процесса окисления определяется скоростью диффузии частиц через пленку. Параболическая зависимость окисления широко встречается в практике при достаточно высоких температурах для большего ряда окислителей и металлических материалов, что позволяет применить параметрический метод для оценки скорости коррозии и прогнозирования коррозионных разрушений при наличии сравнительно небольшого количества экспериментальных данных [13]. Этот вопрос рассмотрен в главе 3. [c.22]

    Большинство коррозионных разрушений газопромысловых труб в сероводородосодержащих газах связывают с коррозионным растрескиванием (при этом не указывается наличие или отсутствие общей коррозии). Однако коррозионные разрушения необходимо рассматривать во взаимосвязи кинетики общей коррозии и коррозионного растрескивания. При общей коррозии уменьшается толщина стенки трубы и возрастают действующие напряжения, [c.9]


    При коррозии с водородной деполяризацией процесс окисления металла протекает со сравнительно большой скоростью. В кислотах активно растворяется большинство металлов (кроме ртути, серебра, золота и платины). Можно показать, что чисто термодинамически вероятность коррозионного разрушения металлов в кислых средах возрастает с уменьшением концентрации ионов металла в среде и с увеличением концентрации ионов водорода. Следует подчеркнуть, что термодинамика рассматривает вопрос только о возможности процесса (в том числе и коррозионного) при отсутствии сопротивления ему, поэтому термодинамические расчеты не определяют кинетику коррозии. [c.21]

    Как указано выше, процесс разрушения металлов при циклическом нагружении можно условно разделить на три периода зарождение усталостной трещины, ее до-критический рост и долом. Поскольку первые два периода — определяющие, то именно на их изучении было сосредоточено основное внимание исследователей, причем раскрытию механизма и закономерностей роста усталостной трещины уделялось больше внимания, чем изучению начальной стадии разрушения, хотя она во многих случаях может определять долговечность детали. Что же касается влияния поверхностно-активных и коррозионных сред на кинетику усталостного разрушения металлов, то в силу сложности протекающих процессов этот вопрос не получил еще достаточного развития, а имеющиеся в литературе данные зачастую противоречивы. [c.76]

    Коррозионно-усталостное разрушение сталей с катодными покрытиями сопровождается понижением их электродных потенциалов от стационарных значений до (-600) (—650 мВ), т.е. почти до их уровня у незащищенных разрушающихся сталей. Приложение напряжения к никелированным сталям из-за нарушения сплошности оксидных пленок вызывает сдвиг их потенциалов в отрицательную сторону до 10 мВ, Качественно характер изменения электродного потенциала химически никелированных образцов при испытании в коррозионной среде такой же, как на рис, 27. Длительность II периода также возрастает с повышением прочности стали. Интенсивное понижение потенциала на Ml участке соответствует моменту потери покрытием сплошности, проникновению коррозионной среды к основному металлу и развитию в нем локализованных процессов коррозионной усталости. Спонтанное разрушение образца сопровождается скачкообразным понижением потенциала на IV участке. Характер изменения электродных потенциалов и кинетика процесса разрушения хромирован- [c.178]

    Судя по экспериментальным данным, многие из теоретических закономерностей в одинаковой степени правомочны для водных и органических электролитов. Это представления о стадийности процесса ионизации металла о непосредственном участии в анодном растворении металлов компонентов агрессивной среды — анионов о связи пассивации металлов с адсорбционными явлениями и т. д. Однако в кинетике анодного растворения и коррозионного разрушения металлов в водных и неводных средах имеются и существенные различия. Как отмечалось, в целом металлы и сплавы в органических растворителях подвергаются более активному растворению, многие из них теряют способность пассивироваться при анодной поляризации, резко снижается защитное действие органических адсорбционных ингибиторов. До недавнего времени вообще считалось необходимым условием пассивации металлов в органической среде некоторая критическая концентрация воды, величина которой зависит от природы металла и состава раствора или же растворенного молекулярного кислорода. [c.107]

    Дпя большинства металлов в реальных условиях электрохимическая коррозия протекает гетерогенно-электрохимическим путем, т.е. через локальные элементы. Разные точки поверхности металлов различаются энергией и свойствами, что отражается на кинетике электрохимической реакции. Особенно много таких зон возникает, когда металл содержит инородные включения (рис. 3.4). При наличии электролита с высокой элктропроводностью на этих неоднородностях появляются местные гальванопары, теорию которых разрабатывали де ля РиБ, А.К. Фрумкин, Ф.И. Гизе, H.A. Изгарышев, Г.В. Акимов, А.И. Голубев и др. Однако в том случае, когда интересует только общая величина коррозии, а не распределение ее по поверхности, всю корродирующую поверхность можно считать однородной. Следует иметь в виду, что при такой замене средняя скорость коррозии не определяет опасность коррозионных разрушений (может иметь место питтинговая коррозия). При этом скорость коррозии характеризуется ано,дной плотностью тока Л = //5а, где 5 - площадь анода. Причины появления неоднородности металлов - макро- и микровключения, неоднородность сплава (наличие сварных швов), разнородность металлов, нарушение изоляционного покрытия, наличие на металле окалины, ржавчины, неравномерная деформация, неравномерность приложенных нагрузок и др. [c.37]

    Установка может быть использована и для исследования коррозии металлов, применяемых для изготовления аппаратов химических производств, работающих с водными средами. Следует иметь в виду, что при коррозионных испытаниях в данной установке нельзя смоделировать и воспроизвести условия для исследования влияния на кинетику коррозии температурного-градиента по высоте стенки. Невозможность учета влияния процесса массопередачи, например конденсации, на скорость коррозии также несколько снижает экспериментальную ценность установки. Достоинством установки является возможность проведения коррозионных исследований (после небольшой модернизации) при нестационарном теплообмене, т. е. при проведении тепловых процессов, обусловленных изменением температуры металла до момента полного выравнивания с температурой окружающей среды. Нестационарный теплообмен характерен для периодов пуска, простоев, изменений технологических режимов работы аппаратов, его влияние на коррозионное разрушение редко поддается учету. [c.197]

    Подавляющее число коррозионных разрушений в практике имеет электрохимическую природу, т. е. эти разрушения происходят в соответствии с законами электрохимической кинетики. Поэтому изучение электрохимических характеристик металлов при проведении коррозионных исследований имеет важное значение для понимания механизма и скорости протекания большинства коррозионных процессов. [c.151]

    Изменение в весе образца не может однозначно характеризовать также и антикоррозионные свойства лакокрасочных покрытий. Уменьшение веса часто свидетельствует о выветривании верхнего слоя покрытия и соответственно об уменьшении его толщины. Начальное увеличение веса характеризует набухае-мость покрытия. Возникновение очагов коррозии на металле под лакокрасочными пленками вызывает резкое увеличение веса образца вследствие накопления продуктов коррозии. Разрушение покрытия сопровождается вторичным уменьшением веса. Увеличение веса на второй стадии процесса может качественно характеризовать кинетику коррозионного процесса под покрытием. [c.208]

    Кинетика процесса разрушения основного металла определяется скоростью отдельных стадий этого процесса, в том числе скоростью растворения металла в горячих зонах и его отложения в холодных. Скорость коррозии зависит также от температуры, давления и скорости циркуляции жидкого металла. Иногда наблюдается избирательное растворение в жидком металле одного или нескольких компонентов сплава, сопровождаемое образованием язв или появлением межкристаллитной коррозии. Наличие в жидком металле оксидов, нитритов и других соединений, полученных при контакте его с воздухом или другими газами, оказывает отрицательное влияние на коррозионную стойкость металлоконструкций. [c.542]

    Особенность кинетики механохимического разрушения в пластической стадии работы заключается в том, что скорость утонения стенки цилиндра dS/dt равна сумме двух слагаемых dSi/dt и dSa/dt. Первое слагаемое представляет собой изменение толщины вследствие коррозионного износа, а второе - учитывает деформационное утонение. Рассмотрим деформацию корпуса тонкостенного цилиндра под действием продольной растягивающей силы, [c.155]

    Приведенные результаты кинетики механохимического разрушения реализуются в основном при проведении коррозионно-усталостных испьгганий, поскольку в реальных конструкциях номинальные напряжения не превосходят предела текучести металла Ст (в среднем стн = 0,6-ат). Тем не менее, результаты [c.161]

    ПО характеру и агрессивности химических продуктов и их комбинаций. Таким образом, нефть, первоначально малоагрессивная или неагрессивная по отношению к металлическим конструкционным материалам при обычных температурах , приобретает в процессах переработки характеристики коррозионноактивной среды. Интенсивность и формы коррозионного разрушения зависят от многих факторов химического и фазового состава нефтяного сырья температуры, давления, скорости перемещения потоков и т. п., употребляемых в процессе или в отдельной химической либо физико-химической операции реагентов стимулирующего либо тормозящего действия на кинетику процесса специальных катализаторов либо оказывающей каталитический эффект поверхности металлического оборудования времени воздействия. [c.11]

    Для исследования кинетики коррозионного разрушения образцы выдерживали fr хлеристем дороде при 150 течение ,Т ,Т8 и 24 ч. Полученные данные приведены в таблице. [c.76]

    Корбачков Л.А. Кинетика коррозионного разрушения металла подземного трубопровода. - М. ИРЦ Газпром, 2000. Обз. Ин-форм. Сер. Защита от коррозии оборудования в газовой промышленности. [c.2]

    Изложены результаты многолетних испытаний коррозионной стойкости различных сплавов и средств защиты во влажных субтропиках. Приведены данные о коррознон-йОм поведении нержавеющих сталей (хромомарганцевых) в атмосфере влажного субтропического климата и в морской воде. Рассмотрены кинетика и характер коррозионного разрушения металлов, изделий из них, защитных покрытий, а также полимерных материалов. Даны рекомендации по выбору конструкционных материалов и средств Их защиты во влажных тропиках и субтропиках. [c.2]

    Известно, что процесс коррозионно-усталостного разрушения можно разбить на ряд периодов, продолжительность которых зависит от природы материала, структурнонапряженного состояния испытываемого объекта и условий нагружения, Необходимо отметить, что с физической точки зрения разделить эти периоды довольно трудно, тем не менее такое условное деление необходимо сохранить для облегчения изучения кинетики усталостного разрушения металлов. [c.38]

    В.В.Панасюк с сотрудниками [59 150, с. 42—49], использо. ав разработанные ими оригинальное оборудование и методики, определили значение pH в вершине развивающейся трещины и изучили его влияние на скорость роста усталостной трещины в стали 40X13 в коррозионной среде с исходным pH =8. Они также показали, что при статическом нагружении в стационарной трещине минимальное значение pH может снижаться до 2,3. Установлено, что характер изменения pH в вершине усталостной трещины зависит от начальных значений pH. При исходном значении среды pH =8 наблюдается непрерывное уменьшение его в вершине трещины до 1,7 в момент разрушения образца, а при исходном значении pH = 2,3 этот показатель снижается в вершине трещины перед разрушением образца до —0,4..Таким образом, при циклическом нагружении степень снижения pH в вершине трещины выше, чем при статическом нагружении, а ее абсолютное значение зависит от величины pH исходного раствора. На основании изучения кинетики коррозионно-усталостного разрушения показано, что с изменением исходных значений pH среды в вершине трещины меняется не только скорость ее роста, но и характер кинетических кривых. При pH = 8 на кинетической кривой скорости роста трещины имеет место плато, типичное для коррозионного растрескивания. При pH =2,3 плато практически отсутствует. Поддержание заданных электрохимических условий в рабочей камере не означает их стабилизации в вершине трещины. [c.106]

    Увеличение частоты нафужения интенсифицирует влияние среды, причем для образцов с порами, трещинами и др. концентраторами напряжений больше, чем для гладких, а для закаленных больше, чем для отожженных. Это наблюдается и для образцов с жестко напрессованными втулками, т.е. в случае проявления фретинг-коррозии (коррозии при трении в условиях малых смещений). Изучение кинетики коррозионно-усталостного разрушения позволяет прогнозировать работоспособность деталей. [c.478]

    На стадии проектирования неразъемных разнородных соединений, для защиты от агрессивного воздействия среда при шборе сварочшх материалов в технологии свархш необходимо учитывать специфику тахшх соединений. Возникает необходимость оценки коррозионного взаимодействия материалов, определения характера коррозионного разрушения и кинетики развития коррозионного процесса соединений, выполненных различными способами сварки. [c.64]

    Различие в площади сварного шва и основного металла, образующих электрохимическую пару, оказывает существенное влияние на кинетику коррозионного прсщесса и характера локализации коррозионных разрушений. Поэтому необходимо установить характер распределения коррозионного тока по поверхности анодных и катодных участков (по методу Н.Д.Томашова). [c.64]


Смотреть страницы где упоминается термин Кинетика коррозионного разрушения: [c.135]    [c.135]    [c.100]    [c.133]    [c.215]    [c.18]    [c.44]    [c.41]    [c.215]    [c.634]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Разрушение коррозионное



© 2025 chem21.info Реклама на сайте