Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свет длина отдельным хлоропластом

    Более 20 лет назад Роберт Эмерсон обнаружил, что красный свет с длиной волны более 700 нм, относительно малоэффективный в фотосинтезе высших растений, становится вполне эффективным, если использовать его совместно с более коротковолновым красным светом. Это явление, названное эффектом усиления Эмерсона , было положено в основу гипотезы, согласно которой фотосинтез включает две разные световые реакции и оптимальные условия создаются для него в том случае, когда две эти реакции протекают одновременно. Гипотезу подкрепило выделение из хлоропластов высших растений двух отдельных систем, получивших названия фотосистема I и фотосистема II (рис. 4.12). Каждая из этих фотосистем характеризуется своим особым набором молекул хлорофилла и связанных с ними переносчиков электронов и каждая осуществляет свои, присущие [c.119]


    Следует сразу сделать одно замечание, ограничивающее практическую применимость аналитических выражений, выведенных в данном разделе. Кинетические уравнения основываются на законе действующих масс и предполагают гомогенность реагирующей системы. Интенсивность света, /, однако, неравномерна по всей толще листа или клеточной суспензии она колеблется даже в пределах одной клетки или отдельного хлоропласта. Об этом осложнении многократно упоминалось выше, и мы еще вернемся к этому в настоящей главе. Пока же мы будем вести рассуждения так, как если бы поглощение света являлось равномерным по всей рассматриваемой области. Это значит, что наши уравнения будут строго верны только для оптически тонких слоев. Поэтому в этих уравнениях под / следует понимать световой поток, фактически достигающий хлорофиллового слоя, а не световой поток, падающий на внешнюю поверхность системы. Эти два потока пропорциональны друг другу, но коэффициент пропорциональности изменяется с изменением глубины, а также длины волны падающего света. Практически большинство, если не все, кинетические измерения были сделаны не с оптически тонкими пигментными слоями, а с листьями, слоевищами или суспензиями, поглощающими ббльшую часть (иногда до 100°/о) падающего света. Ниже мы рассмотрим, насколько сильно изменяются кинетические соотношения, выведенные для оптически тонких слоев, из-за интегрирования вдоль пути, проходимого светом в системе, а также из-за неравномерности поглощения различных составных частей немонохроматического света. Вопрос осложняется, кроме того, структурными эффектами, разобранными в гл. ХХП (рассеяние и эффект проскока ). Еще одно осложнение возникает при изучении клеточных суспензий, сильно перемешиваемых во время измерений. Это перемешивание приводит к тому, что индивидуальные клетки более или менее периодически попадают в световые поля различной интенсивности. Если бы перемешивание было настолько интенсивным, что каждая клетка проходила бы все варианты световых полей за время, достаточно короткое по сравнению с периодом Эмерсона—Арнольда (около 10 2 сек. при комнатной температуре см. гл. XXXIV), то было бы возможно принимать во внимание только среднее освещение и считать его одинаковым для всех клеток. Другими словами, поглощение света каждой клеткой могло бы считаться равным общему поглощению всей суспензии, деленному на число имеющихся в ней клеток. Никакое перемешивание, однако, не может подействовать на содержимое хлоропластов, поэтому молекулы хлорофилла, расположенные глубже, всегда будут получать меньше света, чем молекулы, находящиеся на освещенной поверхности. Еще более важным является то обстоятельство, что степень перемешивания обычно совершенно недостаточна, чтобы узаконить расчет [c.451]


    Под квантовым выходом отдсинтеза понимается количество выделившегося Ог или связанного СОг на 1 квант поглощенной энергии. Было показано, что квантовый выход высок при освещении хлореллы красными лучами с длиной волны 660-680 нм. Использование красного света с большей длиной волны приводило к снижению квантового выхода, а при 700 нм фотосинтез почти прекращался, хотя эта часть спектра еще поглощается хлорофиллом. Однако если хлореллу одновременно освещали коротковолновым (650 нм) и длинноволновым (700 нм) красным светом, то суммарный эффект ( ) был выше, чем при действии каждого красного света в отдельности (рис. 3.8). Это явление получило название эффекта усиления Эмерсона. Отсюда возникло предположение, что в хлоропластах взаимодействуют две пигментные системы. [c.79]

    Методы определения поглощения света, основанные на измерении различий между количеством падающего света и количеством света, прошедшего через объект, а также отраженного и рассеянного им, обсуждаются в гл. III. Если при определении спектров поглощения с помощью этих методов используются узкие спектральные полосы падающего света, то полученные результаты выражают действительное поглощение данного объекта—листа, суспензии клеток или суспензии изолированных хлоропластов. Однако объяснить эти спектры, исходя из оптических свойств отдельных пигментов, чрезвычайно трудно. Особенно трудно интерпретировать спектры поглощения листьев. Проникающий в лист свет проходит через неоднородную среду. Сначала он отражается и преломляется клеточными стенками, особенно в листьях наземных растений, у которых межклетники заполнены воздухом затем он рассеивается множеством внутриклеточных частиц разной величины, обладающих разными показателями преломления. Следовательно, пути света в листе различны и длина их неизвестна. Часть света может вообще не попасть в хлоропласты, тогда как другая часть пройдет через несколько пластид или даже несколько раз через один и тот же хлоропласт. Для суспензий одноклеФочных водорослей или хлоропластов эта неопределенность длины оптического пути меньше, но и в этих случаях она довольно значительна. Известно, что резкое изменение показателя преломления приводит к рассеянию части света. Рассеяние на поверхности клеток водорослей, являющееся результатом различия в показателях преломления их стенок и воды, можно почти полностью исключить, суспендируя клетки в концентрированном растворе белка, показатель преломления которого близок к показателю преломления клеточных стенок [10]. Рассеяние внутри клеток может быть более значительным вследствие того, что рассеивающие свет частицы в этом случае меньше, а также из-за присутствия пигментов. При наличии очень мелких частиц, диаметр которых меньше длины волны света, величина рассеяния обратно пропорциональна четвертой степени длины волны (релеевское рассеяние). Это в высшей степени избирательное рассеяние особенно сильно увеличивает среднюю длину пути коротковолнового света. Для бесцветных частиц больших размеров величина рассеяния в меньшей степени зависит от длины волны. Однако показатель преломления пигментов резко меняется в области их полое поглощения (аномальная дисперсия), вследствие чего [c.39]

    Рассмотрев реакции связывания углерода, вернемся теперь к вопросу о том, как в процессе фотосинтетического переноса электронов, протекающем в хлоропласте, образуются АТР и NADH, необходимые для синтеза углевода из СО2 и Н2О (см. рис. 7-41). Необходимая энергия извлекается из солнечного света, поглощаемого молекулами хлорофилла (рис. 7-46). Процесс преобразования энергии начинается с возбуждения молекулы хлорофилла квантом света (фотоном), сопровождающегося переходом электрона на более высокий энергетический уровень. Такая возбужденная молекула нестабильна и стремится вернуться к исходному состоянию одним из трех способов 1) в результате превращения избыточной энергии в тепло ( в молекулярное движение), либо в тепло и свет с большей длиной волны ( флуоресценция) в том случае, когда лучистая энергия поглощается отдельной молекулой хлорофилла в растворе 2) в результате передачи энергии (но не электрона) непосредственно соседней молекуле хлорофилла при помощи процесса, называемого резонансной передачей энергии или 3) путем передачи высокоэнергетического электрона одной из ближайших молекул (акцептору электрона) и возвращения в первоначальное состояние в результате принятия низкоэнергетического электрона от какой-то другой молекулы (донора электрона, рис. 7-47). Последние два механизма играют ключевую роль в фотосинтезе. [c.467]



Смотреть страницы где упоминается термин Свет длина отдельным хлоропластом: [c.42]    [c.301]    [c.367]    [c.81]   
Фотосинтез (1972) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Хлоропласт



© 2025 chem21.info Реклама на сайте