Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности рассеяния электронов и нейтронов веществом

    ИЛ. Особенности рассеяния электронов и нейтронов веществом [c.294]

    Неравномерность зависимости интенсивности от угла рассеяния позволяет использовать дифракционный эффект для структурных исследований веществ в любом агрегатном состоянии. Сказанное в одинаковой мере относится к дифракции рентгеновских лучей, электронов и нейтронов. Помимо рентгеноструктурного анализа кристаллов наибольшее распространение и признание получили рентгенография стекол и особенно электронография газов и паров. [c.174]


    Нейтронография. Она изучает строение молекул, кристаллов и жидкостей по рассеянию нейтронов в веществе. Чаше всего нейтронография используется как метод уточнения или получения дополнительной информации о структурах, уже исследованных методом РСА. При этом используются некоторые преимущества нейтронографии по сравнению с РСА возможность определения положения легких атомов (особенно водорода) в присутствии тяжелых, а также возможность исследования структур, содержащих атомы элементов с близкими значениями порядкового номера 2, почти не различимых РСА. Рассеяние рентгеновского излучения — это результат колебания электронов атомов под воздействием рентгеновских квантов. Нейтроны же проникают через электронную структуру атомов и молекул и взаимодействуют с атомными ядрами. Поэтому нейтроны рассеиваются более равномерно всеми атомами образца. Рентгеновское же излучение рассеивается в большей степени тяжелыми атомами, которые богаче электронами. Поэтому рентгеновское излучение почти не реагирует на положение легких атомов, особенно водорода в структуре исследуемого вещества. [c.197]

    При взаимодействии радиоактивного излучения с веществом обязательным процессом является взаимодействие излучения с электронами атомных оболочек. При этом возможно частичное поглощение излучения, его рассеяние и отражение. Методы анализа, основанные на измерении абсорбции или изменении направления ядерного излучения в результате взаимодействия с веществом, хотя и не универсальны, но в ряде случаев могут быи. полезны, особенно при определении одного из компонентов бинарной смеси. В зависимости от типа излучения различают у -абсорбционный, Р -абсорбционный и нейтронно-абсорбционный методы. Кроме того, следует упомянуть методы, основанные на отражении уЗ-частиц и на замедлении нейтронов. Существуют и другие методы [c.381]

    Метод нейтронографии основан на эффекте рассеяния потока медленных нейтронов атомными ядрами вещества. Контраст появляется вследствие различия интенсивности рассеяния монохроматического потока нейтронов на ядрах различной массы, причем существенно, что в отличие от рентгеновских лучей и электронов поток нейтронов не несет электрического заряда и, следовательно, интенсивность их рассеяния определяется только массой ядра. Практически применение метода нейтронографии основывается на сравнении интенсивности рассеяния на ядрах водорода и дейтерия при исследовании системы, содержащей некоторое количество дейтерированных молекул в среде водородсодержащих цепей, или наоборот. Контраст в этом случае особенно велик из-за двукратного изменения рассеивающей массы. Источником потока нейтронов обычно являются ядерные реакторы. Длина волны потока зависит от энергии нейтронов области температур 20—100°С отвечают значения равные 1,6—1,8 А Используя холодные нейтроны, получают пучки с длинами волн до 10 А. [c.82]


    Важнейшими нз современных методов исследования геометрии молекул в газовой фазе являются следующие. 1. Электронографический метод — исследование рассеяния электронов молекулами вещества. 2. Спектрографические методы — исследование спектров испускания и поглощения веществ во всем диапазоне оптического спектра для длин волн от - 30 нм ( ЗООА) до 1 мм, а также спектров комбинационного рассеяния и флюоресценции. К спектроскопическим методам относится и радиоспектроскопический метод— исследование спектров поглощения веществ в радиочастотном диапазоне спектра для длин волн от долей миллиметра до 10 см. Другие методы — рентгенографический (исследование рассеяния рентгеновских лучей молекулами вещества) и нейтроно-графическин (исследование рассеяния нейтронов молекулами вещества) из-за ряда их особенностей используются только для конденсированных тел (преимущественно кристаллов, а также аморфных твердых тел и частично жидкостей). Практическое значение для исследования геометрической конфигурации молекул вещества в газовой фазе в настоящее время имеют только электронографический и спектроскопические методы. Сущность электронографического метода кратко изложена в Приложении 1. Сущность спектроскопических методов изложена в разд. VHI и IX. Данные по геометрической конфигурации молекул, использованные в последующем изложении, получены электронографическим и спектроскопическими методами. [c.167]

    В нейтронографичсском анализе для исследования веществ используются монохроматические пучки медленных нейтронов. Специфика использования нейтронографии для структур1 ых и других исследований веществ обусловлена следующими особенностями рассеяния нейтронов в кристаллической решетке по сравнению с рентгеновскими лучами нейтроны рассеиваются ядрами атомов, а рентгеновские лучи в основном электронами рассеяние нейтронов не зависит от угла (направления) падения пучка, тогда как рассеяние рентгеновских лучей от него зависит амплитуда рассеяния нейтронов не монотонно зависит от атомного номера элемента, а в случяе рентгеновских лучей функция атомного рассеяния растет с ростом атомного номера нейтроны обладают магнитным моментом нейтроны глубоко проникают в массу исследуемого образца и слабо поглощаются веществом. [c.106]

    СТРУКТУРНЫЙ АНАЛИЗ - анализ структуры материала и его дефектов. Для исследования атомно-кристаллической структуры исполт,зуют дифракцию и рассеяние рентгеновских лучей (см. Рентгеноструктурный анализ), электронов (см. Электронографический анализ) и нейтронов (см. Нейтронографический анализ). Получили распространение методы анализа с использованием ориентационных эффектов при рассеянии тяжелых заряженных частиц (см. Ме-тодом ориентационных аффектов анализ), а также автоионный микроскопический анализ, в к-ром используют ионизацию атомов (или моле-ку.т) газа в неоднородном электр. поле у поверхности образца. При рассеянии потоков излучений атомами, находящимися в узлах идеальной кристаллической решетки, возникают резкие максимумы и диффузный фон вследствие комптоновского рассеяния. По положению и интенсивности максимумов определяют тип кристаллической решетки, размеры элементарной ячейки и расположение атомов в ней. Нарушения идеальности кристалла, напр, колебания атомов, наличие атомов различных хим. элементов, дислокаций, частиц новой фазы и др., изменяют положение, форму и интенсивность максимумов и вызывают дополнительное диффузное рассеяние, что дает возможность получать информацию об этих нару-шеннях. Дифракционными методалш изучают также строение веществ (напр., аморфных), пе обладающих строгой трехмерной периодичностью. Теории дифракции всех излучений имеют много общего, в то же время в них есть особенности, обусловли- [c.470]


Смотреть страницы где упоминается термин Особенности рассеяния электронов и нейтронов веществом: [c.161]    [c.470]    [c.161]   
Смотреть главы в:

Кристаллография рентгенография и электронная микроскопия -> Особенности рассеяния электронов и нейтронов веществом




ПОИСК





Смотрите так же термины и статьи:

Нейтрон

Нейтронное рассеяние

Рассеяние нейтронов и электроно



© 2025 chem21.info Реклама на сайте