Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рассеяние света релеевское

    Рассеяние света без изменения частоты называется классическим или релеевским. Рассеяние света с изменением частоты называется комбинационным, причем рассеяние с частотой с (оз — 0) ) называется стоксовым, а с частотой с т Ыд) — антистоксовым. [c.17]

Рис. ХП.1. Система координат для наблюдения релеевского рассеяния света Рис. ХП.1. <a href="/info/742761">Система координат</a> для наблюдения <a href="/info/19097">релеевского рассеяния</a> света

    ПРИМЕНЕНИЕ МЕТОДА РЕЛЕЕВСКОГО РАССЕЯНИЯ СВЕТА И ЭФФЕКТА КЕРРА [c.244]

    Величина дипольных моментов молекул изменяется с частотой световых колебаний. Эти диполи являются вторичными источниками излучения с той же длиной световой волны и обусловливают рассеяние света ( релеевское рассеяние). Обозначим через ц интенсивность свет рассеянного единицей объема рассеивающей среды под углом О к направлению падающего светового пучка с интенсивностью /о- Для определения МВ необходимо измерить величину / е, называемую приведенной интенсивностью рассеяния, пропорциональную отношению о к /д. Эта величина складывается из двух составляющих, одна из которых относится к растворителю /<0, а другая—к растворенному полимеру / в.  [c.76]

    В гл. I кратко рассмотрены общие вопросы разновидности люминесценции, ее связь с фотохимией, поляризация люминесценции. Уделено внимание и рассеянию света (релеевскому и комбинационному), поскольку оно может служить помехой при измерениях люминесценции. [c.5]

    Релеевское рассеяние света в газах и растворах, а также явление Керра в газах и растворах позволяют измерять независимо анизотропию оптической (электронной) поляризуемости молекул  [c.228]

    На основе экспериментальных данных, полученных из релеевского рассеяния света, эффекта Керра и молярной рефракции, возможно и определение молекулярных характеристик (6ь 62, 63). [c.229]

    ГЛАВА ХП РЕЛЕЕВСКОЕ РАССЕЯНИЕ СВЕТА [c.229]

    Метод, основанный на анализе измерений релеевского рассеяния света, разработан автором [9, 12]. Поляризуемость молекулы (см. гл. I) вдали от полосы поглощения света представляет собой симметричный тензор второго ранга а . Один из инвариантов этого тензора — анизотропия поляризуемости молекул [c.109]

    РЕЛЕЕВСКОЕ РАССЕЯНИЕ СВЕТА В ГАЗАХ [c.229]

    Таким образом, из эксперимента по релеевскому рассеянию света газов получаем уравнения, связывающее три главных значения 1, 2, Ьз. [c.232]

    При исследовании равновесий с участием нескольких компонентов полезно комплексное использование методов эффекта Керра, электрических дипольных моментов и релеевского рассеяния света. [c.247]

    КР. При этом рассеянный свет имеет двойственную природу. Одни кванты падающего света с частотой Уо и энергией ку>о, взаимодействуя с молекулами образца, могут рассеиваться не изменяясь (релеевское рассеяние) (рис. 7.13), другие возбуждают в них переходы (молекулы переходят в возбужденное состояние). Пусть при переходе из основного Уо в первое возбужденное VI колебательное состояние требуемая на возбуждение энергия Ай о, двухатомной молекулы равна [c.171]


    КР-спектр показывает, что рассеянный свет отличается от падающего. Большая часть рассеянного света имеет ту же частоту, что и падающий свет (релеевское рассеяние). По обеим сторонам от основной релеевской линии с частотой Уо симметрично располагаются [c.179]

    Бензол. Рассмотрим, например, жидкий бензол. Анализ измерений релеевского рассеяния света [1] показал, что в жидком бензоле есть ассоциаты. Они образуются при взаимодействии групп С—Н одной молекулы с л-орбиталями другой молекулы бензола (л-ассоциаты). Согласно [1] при комнатной температуре ассоциировано не менее 70% молекул жидкого бензола. Молекула бензола—симметричный волчок. Через центр молекулы перпендикулярно плоскости, в которой лежат атомные ядра углерода, проходит ось симметрии С в. Если положение оси симметрии С определено, то ориентация молекулы бензола в пространстве задана. Две молекулы бензола могут взаимодействовать с образованием л-ассоциата, в котором, по-видимому, имеются две [c.103]

    При изучении структуры индивидуальных жидкостей и концентрированных растворов существенную пользу могут принести рентгенография, радиоспектроскопические измерения и релеевское рассеяние света. Преимущество этих методов состоит в том, что исследователи располагают теорией, устанавливающей вполне определенную связь между результатами измерений и строением жидких фаз. Вопросы рентгенографии жидкостей обсуждаются в следующей главе. Здесь мы дадим некоторое представление о возможностях анализа данных, получаемых методами диэлектрической радиоспектроскопии и релеевского рассеяния света. [c.108]

    Точно так же релеевское рассеяние света не обнаруживает присутствия /г-мерных ассоциатов вида р, строение которых таково, что [c.111]

    Таким образом, с помощью релеевского рассеяния света можно обнаружить такие ассоциаты и комплексы, которые не фиксируются радиоспектроскопическими измерениями. Последние в свою очередь обогащают информацию о строении жидких фаз и дают возможность повысить степень надежности выводов, полученных с помощью релеевского рассеяния света. [c.112]

    Компоненты Мандельштама — Бриллюэна. Пусть на жидкость падает монохроматический пучок света, волновой вектор которого равен Л(, (рис. 30). Будем рассматривать только ту часть рассеянного излучения, которая обусловлена флуктуациями плотности. Предположим, что рассеянное излучение (релеевское рассеяние), волновой вектор которого равен к, наблюдается под углом 0 к направлению падающей световой волны. Тогда в рассеянии принимают участие те монохроматические звуковые волны, волновой вектор к которых удовлетворяет следующему соотношению  [c.141]

    М. И. UJ а X п а р о и о в. Об основных вопросах практики и теории релеевского рассеяния света в жидкостях. Сб, Современные проблемы физической химии . Т. 5. Изд-во МГУ, 1970, стр. 3. [c.159]

    Согласно теории диссипативных систем и теории бифуркаций Пригожина, возникновение упорядоченной структуры из беспорядка означает неожиданное и резкое отклонение поведения системы от соответствующей термодинамической ветви, скачкообразное изменение свойств, получившее название "бифуркация". Возникновение бифуркаций связано с флуктуациями - беспорядочным, чисто случайным явлением, которое проявляется в определенных условиях и вызвано специфическими молекулярными свойствами микроскопических составляющих, т.е. тем, что по определению не учитывается равновесной термодинамикой и линейной неравновесной термодинамикой. В равновесных системах флуктуации симметричны, обратимы, случайны и образуют сплошной фон. Их эволюция может быть ограниченной и кратковременной, а поэтому они, как правило, не влияют на свойства системы. Известным исключением является флуктуация плотности, определяющая броуновское движение коллоидной частицы и классическое релеевское рассеяние света гомогенной средой. Общий характер равновесных процессов, в которых отсутствуют бифуркации, не зависит от особенностей внутреннего строения и взаимодействий микроскопических частиц. Именно благодаря этому обстоятельству равновесная термодинамика обладает единым теоретическим базисом - универсальной теорией, не учитывающей внутренних свойств элементарных составляющих и, следовательно, справедливой для всех процессов такого рода, и поэтому может строиться как наука исключительно на аксиоматической основе. [c.92]

    Весьма точная оценка ассоциативного состояния индивидуальной жидкости может быть получена при экспериментальном определении коэффициента самодиффузии, для чего может быть применен ряд методов, из которых наиболее удобным является метод спинового эха — вариант ЯМР-спектро-скопии. Наконец, с хорошими результатами для определения степени ассоциативного состояния индивидуальных жидкостей и концентрированных растворов применяется группа методов, основанная на изучении флуктуаций свойств с помощью релеевского рассеяния света [2]. [c.375]

    Трудности применения спектроскопии комбинационного рассеяния к полимерам состоят в следующем 1) сильное релеевское рассеяние или так называемое фоновое рассеяние света 2) поглощение света образцом, приводящее к невозможности измерения интенсивности линий комбинационного рассеяния. [c.280]

    Когерентное релеевское излучение, вследствие того, что оно вызывается колебаниями плотности, возрастает в ряду твердое тело — жидкость — газ рамановское излучение, в основном пропорциональное числу молекул в единице объема, составляет в кристаллах приблизительно половину, в жидкостях — не более нескольких процентов, а в газах -только несколько тысячных от всего рассеянного света. Таким образом, в газах эффект Рамана не сказывается на " езультате классической теории эффекта Тиндаля в отношении степени деполяризации общего излучения. [c.91]


    Релеевский триплет. Итак, спектр тонкой структуры релеевского рассеяния света (релеевский триплет) в чистых жидкостях обусловлен адиабатическими и изобарическими флуктуациями плотности. В растворах центральная компонента релеевского триплета, будем называть ее компонентой Гросса (по имени открывшего ее в 1930 г. Е. Ф. Гросса), зависит не только от изобарических флуктуаций плотности, но и от флуктуаций концентрации. Изучая спектр центральной компоненты релеевского триплета, изображенного на рис. 32, можно определить коэффициент те.мпературопроводности х и, если известно Ср, —коэффициент теплопроводности %. Изучая спектр компонент Мандельштама—Бриллюэна, получают сведения о скорости распространения и коэффициенте поглощения звуковых волн [36]. Точность этих измерений резко возросла с появлением газовых лазеров. Измерения проводятся при углах рассеяния 0, обычно превышающих 20—30°. В этих условиях спектр компонент Мандельштама — Бриллюэна позволяет изучать лишь гиперзвуковые волны, имеющие частоту порядка 10 Гц. При очень малых углах рассеяния в принципе можно было бы исследовать скорость и поглощение звука в более широком диапазоне частот и оптическим методом получать сведения о дисперсии скорости звука, т. е. о зависимости скорости звука от частоты колебаний звуковых волн [37]. [c.144]

    Сущность эффекта заключается в том, что когда свет достаточной интенсивности проходит через вещество, то часть света, рассеиваемая перпендикулярно направлению исходного луча, содержит и большие, и хменьшие частоты, чем были в исходном луче при обычном рассеянии света (релеевское рассеяние) частота вообще не изменяется. Прн комбинационном рассеянии наряду с нормаль- [c.133]

    Комбинационное рассеяние света. Эффект комбинационного рассеяния, открытый., независимо друг от друга Раманом, Мандельштамом и Ландсбергом, часто применяется для исследования соединений с ковалентной связью. Сущность эффекта заключается в том, что когда свет достаточной интенсивности проходит через вещество, то часть света рассеивается перпендикулярно направлению исходного луча, содержит и большие и меньшие частоты, чем были в исходном луче при обычном рассеянии света (релеевское рассеяние) частота вообще не изменяется. При комбинационном рассеянии наряду с нормальной частотой в спектре обнаруживаются дополнительные линии — спутники . Те линии, частота которых меньше, чем в исходном колебании, называют стоксовыми линиями, а те, у которых частота больше,— антистоксовыми. Физическая картина этого явления представляет собой взаимодействие падающего кванта света с молекулой вещества (неупругое соударение). При этом или часть энергии кванта поглощается молекулой и рассеивается меньший квант, или, если молекула находится в возбужденном состоянии, падающий квант получает от нее дополнительную энергию и рассеивается больший квант. Молекула, следовательно, может находиться в двух состояниях, отличающихся по запасу энергии на А . В первом случае квант рассеянного излучения должен иметь величину (Яг—АЕ), а во втором — величину (/гг+АЯ). Это соответствует частотам стоксовой линии V—(АЕ/Н) и антистоксовой - - АЕ/Н), причем интенсивность стоксовой линии будет выше, так как большинство молекул находится в основном состоянии, а число возбужденных молекул обычно очень мало. Энергетические уровни в комбинационном рассеянии представляют собой уровн , возникающие вследствие изменения поляризуемости молекулы. Свет, т, е. электромагнитные волны, вызывает поляризацию люлекулы и индуцирует в ней переменный диполь. Между напряженностью Е поля и дипольным моментом .I существует прямая пропорциональная зависимость Е= а х., где а — поляризуе- [c.206]

    Рассеянный свет. Различают три вида рассеянного света, длина волны которого совпадает с длиной волны возбуждающего света релеевское рассеяние, тиндалевское рассеяние и рассеяние на крупных частицах. Как правило, рассеянный свет первых двух типов сильно поляризован. Помехи, вызванные рассеянным светом, будут наименьщими при освещении под прямым углом. Для освобождения от рассеянного света чаще всего используют отсекающие фильтры с резкой коротковолновой границей, разделяющей возбуждающий свет и свет флуоресценции. Поскольку рассеянный свет поляризован, то для понижения его интенсивности помещают между флуоресцирующим раствором и анализирующим монохроматором поляризатор, -ориентированный так, что он пропускает лишь горизонтально поляризованный свет. При этом интенсивность рассеянного света снижается значительно сильнее, чем свет флуоресценции. [c.73]

    Для аксиально симметричных молекул, не имеющих дипольного момента, например этилен С2Н4, и-дизамещенные бензола, нафталин и т. п., явление Керра дает ту же информацию, что и релеевское рассеяние света. Поэтому в этих случаях принципиально возможно определить только две величины из трех. [c.245]

    Спектры комбинационного рассеяния света. Молекулы газов, жидкостей и кристаллов способны не только испускать и поглощать свет, но и рассеивать его. Ехли спектральный состав падающего и рассеянного света одинаков, то рассеяние называется релеевским, или классическим. Оно объясняется упругим взаимодействием кванта света с молекулой, при котором не происходит обмена энергии. Но может быть и такое поглощение света, которое вызывает колебания ядер молекул и связанную с этим деформацию электронной плотности. Одновременно изменяется частота рассеянного света. Рассеяние света молекулами среды, сопровождающееся изменением частоты падающей электромагнитной волны, называется комбинационным рассеянием света (КРС). Явление КРС открыто в 1928 г. одновременно и независимо Л. И. Мандельштамом и Г. С. Ландсбергом (СССР) и Раманом (Индия). Спектры КРС подобно ИК-спектрам являются колебатель- [c.49]

    Статистическая теория идеального бозе-газа показывает, что флуктуации плотности этого газа неограниченно возрастают, когда температура, понижаясь, стремится к Т . Эти флуктуации бесконечно велики при всех температурах, лежащих в интервале 0<7 <7 к. Следовательно, при переходе через критическую температуру интенсивность релеевского рассеяния света должна была бы очень сильно возрастать, а этого у жидкого гелия не происходит. Упомянутые трудности заставили Л. Д. Ландау в 1941 г. построить совершенно другую, правда, не молекулярную, а полуфеноменологическую теорию сверхтекучести. [c.240]

    Исследование термодинамических флуктуаций ведет свое начало с работ Смолуховского (1908) и Эйнштейна (1910), посвященных теор ии рассеяния света на тепловых флуктуациях плотности. К возникновенню флуктуаций плотности в жидкости приводит статистический характер теплового движения молекул. Релеевское светорассеяние вызывают флуктуации плотности и ориентаций в объемах, малых по сравнению с длиной световой волны. [c.148]

    При использовании в качестве источников света лазеров был обнаружен целый ряд новых явлений, в основе которых лежит релеевское рассеяние света. Эти явления получили название вынужденного комбинационного рассеяния и основали новую область науки — нелинейную оптику. Нелинейная оптика затрагивает эффекты, определяемые изменениями во Бремени нелинейной части коэффициента поглощения света. Напряженность поля в световой волне при изучении эффектов вынужденного рассеяния света составляет 10 -г-10 в см. Такая световая волна изменяет состояние среды. Эксперименты показали, что и вынужденное молекулярное рассеяние света в воде также очень мало по сравнению с рассеянием света другими жидкостями (Фабелинский, 1969). [c.152]

    При коагуляции число частиц уменьшается, но при этом, как минимум во столько же раз, увеличивается их объем. В итоге, согласно формуле Релея (3.17.3), интенсивность светорассеяния увеличится пропорционально объему частиц (т. е. среднему числу первичных частиц в одной флокуле) который растет, как известно из законов кинетики коагуляции, пропорционально времени. В целом этот вывод подтверждается измерениями зависимости интенсивности светорассеяния от времени, прошедшего от начала коагуляции (введения электролита), а также независимыми прямыми измерениями числа частиц (флокул) в ультрамикроскоп. Имеются, однако, принципиально важные отклонения от прямой пропорциональной зависимости. Отклонения наблюдаются уже на первых этапах коагуляции, и они тем сильнее, чем дальше заходит процесс коагуляции. Интенсивность рассеяния света сильно коагулированным раствором во много раз меньше, чем это следует из формулы Релея. Тому есть ряд причин, и самая очевидная — выход размера флокул за пределы действия закона релеевского рассеяния. Крупные флокулы с размером больше длины волны рассеивают свет совсем по другим законам. В случае очень крупных частиц (флокул) действуют законы геометрической оптики, согласно которым распространение луча света регламентируется явлениями отражения и преломления света на частицах, а не его рассеянием. Однако наиболее важна другая причина нелинейной зависимости светорассеяния от размера (массы) флокул. Она заключается в том, что флокулы коагулята — это рыхлые объекты. В рамках теории Релея это обстоятельство отразится на вели- [c.747]

    Измерение интенсивности рассеянного света проводили на приборе ФПС-2М, сконструированном и изготовленном в ЦКБ АН СССР. Действие прибора основано на регистрации углового расиредолония интенсивности релеевского рассеяния света исследуемым веществом. Измеряли относительную интенсивность рассеянного света при неполяризованном падающем луче (f/) и X = 4360 А иод углом 90° (Д ц ) и 45° и 135° (z = Относительную интенсивность рассеянного света при условии, что градуировка прибора произведена по бензолу при 25° С и X 43G0 А, рассчитывали по формулам для пеполяризованпого света и  [c.83]

    Интенсивность рассеянного когерентного релеевского излучения, согласно предыдущему, зависит, во-первых, от степени упорядоченности расположения рассеивающих моле ул, а, во-зторых, от величины индуцированных моментов в отдельной молекуле, т. е. от поляризуемости а. Временные колебания плотности, вызывающие появление рассеянного света, уже не люгут объяснить дальнейшее явление, состоящее в том, что если падающий световой луч линейно поляризован, то луч, испытавший преломление, остается полностью поляризованным, а рассеянный свет — частично деполяризован. Для объяснения такой деполяризации рассеянного света приходится отказаться от сделанного ранее (стр. 55 и 69) упрощающего предположения о том, что внутри молекулы ее поляризуемость изотропна, т. е. что поляризуемость во всех направлениях одинакова. Уже не в каждой молекуле индуцируется момент, пропорциональный силе возбуждающего поля, .. = аЕ, совпадающий с направлением поля. Если бы это было так, то колебания молекулы происходили бы только в направлении электрического поля — падающего света, и излучение, перпендикулярное к направлению колебаний, было бы полностью поляризовано. Если же поляризуемость в молекуле не во всех направлениях одинакова, т. е. анизотропна, то молекула уже не колеблется в направлении возбуждающей силы и излучение содержит также свет, у которого направление элгктрических колебаний перпендикулярно к возбуждающему полю, т. е. рассеянный свет содержит в большей или меньшей степени колебания, параллельные направлению падения возбуждающего света. Поэтому рассеянный свет является смесью поляризованного и возникшего вследствие деполяризации естественного света, как это в действительности и наблюдается. Итак, для объяснения деполяризации рассеянного света мы должны принять анизотропию поляризуемости. Это значит, что в направлениях трех взаимно перпен- [c.91]


Смотреть страницы где упоминается термин Рассеяние света релеевское: [c.180]    [c.105]    [c.110]    [c.149]    [c.173]    [c.612]    [c.118]   
Введение в современную теорию растворов (1976) -- [ c.5 , c.103 , c.108 , c.109 , c.110 , c.111 , c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация в растворах полимеров рассеяние видимого света релеевское рассеяние

К теории скалярной компоненты релеевского рассеяния света

О методике измерений интенсивности и степени деполяризации релеевского рассеяния света

Применение метода релеевского рассеяния света и эффекта Керра

Рассеяние релеевское

Рассеяние света

Релеевское рассеяние света в газах и растворах

Релеевское рассеяние света и молекулярное строение жидкостей

Решение симпозиума РелеевскОе рассеяние света и строение жидкостей

Теория симметричной компоненты релеевского рассеяния света и строение жидкостей



© 2025 chem21.info Реклама на сайте