Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическая и длина волны

Рис. 69. Зависимость оптической плотности О от длины волны и 1лучепия Я (а) и концентрации поглощающего вещества в растворе С (С < < Сз) или толщины поглощающего слоя I (б) при различной степейII монохроматнзацип потока излучения. Рис. 69. <a href="/info/432294">Зависимость оптической плотности</a> О от <a href="/info/2957">длины волны</a> и 1лучепия Я (а) и концентрации поглощающего вещества в растворе С (С < < Сз) или толщины поглощающего слоя I (б) при различной степейII монохроматнзацип потока излучения.

    Оптическая плотность О, пропускание Т (в %), поглощение А (в %) или молярный коэффициент экстинкции е представлены в зависимости от длины волны X (в ммк) или волнового числа v(в лi ), Эти величины связаны между собой следующими соотношениями  [c.734]

    Принцип действия спектрографа виды спектров. В спектрографе пучок света, проходящий через щель, попадает в устройство, которое разлагает излучение на его составляющие и направляет их в разные места фотографической пластинки, соответствующие определенным длинам волн и частотам V. Для исследования видимого и ультрафиолетового излучения обычно используют оптические спектрографы, в которых излучение разлагают, пропуская его через призму из стекла (для видимого света) или из кварца (для ультрафиолетового излучения). Принципиальная схема спектрографа показана на рис. 1.1. Разложение света призмой обусловлено зависимостью показателя преломления от длины волны света для большинства сред показателе- преломления уменьшается с увеличением длины волны. [c.9]

    На основании измерений и расчетов построить спектр поглощения, т. е. график зависимости оптической плотности или коэффициента погашения от длины волны. [c.37]

    Г. Оптические методы анализа. Оптические методы анализа реагирующей смеси во многих случаях оказываются весьма удобными. В качеств оптических свойств, характеризующих систему, можно использовать поглощение при какой-то одной или нескольких длинах волн (в ультрафиолетовой, видимой, инфракрасной или микроволновой областях), показатель преломления смеси, вращение плоскости поляризации одним или несколькими веществами, рассеяние света макромолекулами или флуоресценцию некоторых из присутствующих веществ. [c.63]

    Однако для этого необходимо, чтобы отсутствовало какое-либо взаимодействие между отдельными компонентами смеси, в результате которого возможно изменение их индивидуальных поглощающих свойств. Аддитивность оптических плотностей дает возможность проводить анализ многокомпонентных систем без предварительного разделения компонентов. Для определения концентрации п компонентов составляют систему из п уравнений и измеряют оптические плотности раствора при п длинах волн. Решить эту систему можно, зная е каждого компонента при всех этих длинах волн. [c.466]


    Выражение (3) получается в предположении, что молекула является точечной и не имеет никакой протяженности в пространстве. В случае обычной дисперсии и поглощения это допущение совершенно оправдано, ибо протяженность молекулы имеет порядок нескольких ангстрем, а оптическая длина волны — тысяч ангстрем. Однако как в классической, так и квантовомеханической теории естественной оптической активности обязательно необходимо учесть изменения фаз электромагнитной волны нри распространении ее через пространство, занимаемое отдельной молекулой. Тогда в приближении следующего порядка получим [6а, б, 7] [c.262]

    Пусть луч света с угловой частотой ю распространяется параллельно оси спирали 2. В нулевом приближении можно считать холестерик почти изотропной средой с некоторым средним показателем преломления п. Оптическая длина волны в среде равна [c.259]

    Л. Аморфные вещества. Исследование спектров КР аморфных веществ позволяет расширить наши сведения о распределении мод внутри этих тел. В таких материалах длина когерентности нормальных мод, вероятно, короче оптических длин волн, следовательно, обычные правила отбора для волнового вектора становятся невыполнимыми, и рассеяние КР может иметь место практически на всех нормальных модах [159, 236]. Однако интенсивность рассеяния зависит теперь от весовых факторов, образующих тензор оптического взаимодействия. Суммирование по всем модам можно заменить использованием плотности колебательных состояний (у) число мод на единичный частотный интервал. Показано, что для стоксова спектра КР должно быть справедливо соотношение [c.542]

    Непосредственный метод определения дисперсии сводится к измерению относительного запаздывания на пути распространения импульсов для двух значений оптических длин волн A-i и Х2. [c.209]

    Номер светофильтра Длина волны максимума прозрачности светофильтра, А Оптическая плотность Среднее значение из обоих отсчетов О Коэффициент погашения е [c.32]

    Построить спектр поглощения е = / (X), отложив на оси абсцисс длины волн (максимум прозрачности светофильтра), а на оси ординат — коэффициенты погашения. Коэффициенты погашения раствора при данной длине волны следует взять из того измерения, оптическая [c.32]

    Определите константу равновесия реакции А + 2В = ABj, если при некоторой длине волны коэффициенты погашения веществ А и В равны нулю. Оптические плотности равновесных смесей при этой длине волны равны  [c.235]

    С этой целью предварительно устанавливают интервал длин волн и номер рабочего светофильтра, где наблюдается максимальное поглощение раствора катализатора, и при выбранной длине волны (597 нм) строят калибровочный график. По мере протекания реакции окисления катализатора из реактора в мерную колбу на 25 мл отбирают пробы по 2 мл и разбавляют до метки раствором сравнения (20 %-ным раствором едкого натра). Зафиксировав показание оптической плотности испытуемого раствора на приборе, по калибровочному графику находят значение соответствующей концентрации катализатора. [c.46]

    Коэффициент иропорциональности в уравнении (1,66) е называется коэффициентом ногашения, который зависит от природы поглощающего вещества, длины волны и температуры. При измерении оптической плотности в максимуме полосы поглощения коэффициент погашения называется кажущимся е  [c.22]

    Для систем произвольной конфигурации от дифференциальных уравнений переноса переходят к интегральным [5]. Вывод интегральных уравнений излучения, описывающих перенос излучения в поглощающих средах, сводится к совместному рассмотрению всех видов излучения и решению уравнения переноса для интенсивности Д. (М, 5) из уравнения (5.10). Объемный характер теплообмена излучением в поглощающих средах зависит от молекулярных свойств среды. Для чистых газов излучение и поглощение носит четко выраженный селективный характер, их спектр является полосатым. Поэтому при выборе необходимого воздействия требуется знание спектральных характеристик оптических констант веществ. Задачи, связанные с переносом энергии в аэродисперсных системах, требуют анализа дисперсного состава твердой или жидкой фазы и учета индикатрис их рассеяния в зависимости от длины волны. [c.95]

    Переход 2-3 является безызлучательным. Возвращение электронов с уровня 2 на исходный уровень I сопровождается излучением на длине волны 694,3 нм (красный цвет). Оба конца рубинового стержня покрыты отражающими слоями (< и 6 на рис. 5.2, а, причем слой 4 выполнен полупрозрачным). После многократных отражений в оптическом резонаторе, образованном зеркалами и рубиновым стержнем, происходит усиление излучения и образуется мощный когерентный пучок с плоским фронтом, двигающимся вдоль оси кристалла и выходящим через полупрозрачное зеркало 4 (рис. 5.2, а). Генерация излучения продолжается до тех пор, пока заселенности уровней 1 и 2 не сравняются. Лазер на кристалле рубина длиной от 20 до 25 см и диаметром 1,5 см при накачке с помощью светового импульса длительностью 10 з с излучает в течение времени такого же порядка импульс мощностью 1 кВт. [c.98]


    В спектрофотометрии измеряемым свойством является оптическая плотность поглощения растворов О при данной длине волны к  [c.121]

    Для исследования строения органических соединений, изучения явления таутомерии, а также для аналитических целей большое значение приобрело установление зависимости величины угла вращения от длины волны проходящего света. Эту зависимость называют дисперсией оптического вращения. [c.895]

    Величину lg(/o//) в (1.17) характеризующую поглощательную способность вещества в растворе, называют оптической плотностью. В аналитической практике, стремясь подчеркнуть сущность процесса, лежащего в основе фотометрического определения, а именно поглощение квантов электромагнитного излучения оптического диапазона аналитической формой, эту величину называют поглощением или светопоглощением и обозначают буквой А. Для раствора поглощающего вещества при постоянных концентрации и толщине поглощающего слоя А зависит от длины волны. [c.56]

    Несоблюдение законов поглощения может быть вызвано физическими и химическими причинами. Недостаточная монохроматичность потока лучистой энергии вызывает обычно отрицательное отклонение. Предположим, что оптическая характеристика поглощающего вещества имеет вид, представленный на рис. 69. Рассмотрим два потока лучистой энергии, охватывающие интервалы длин волн к — кг и Яз — 4. Измерения в интервале длин волн Я1 — Яг когда поток лучистой энергии приближается к идеально монохроматическому излучению, дают величину О, приблизительно равную Вмакс, а в интервале длин волн Я3—Я4 — величину равную [c.466]

    Нели оптическая плотность п[)и некоторых длтшах волн выходит за преде. И . 0,1—2,0, то следует измен1гть толщину поглощающего слоя и произвести вновь измерения нри этих длинах волн. 9. Построить спектр поглощения, для чего па оси абсцисс отложить длины волн, а на оси ордина — оптическую плотность или коэффициент нога-шенпя. [c.34]

    Бланк для заппси снеклра имеет нгкалу длин волн, градуированную через 1 нм, и две ординаты (шкала оптической плотности 0,01 О = = мм и шкала процента пропускания). Скорость вращения цилиндра (скорость развертки) может быть изменена при помощи переключателя в средней части панели. [c.50]

    На основании экспериментально определенных зиаченин оптических плотностей растворов ири различных длинах волн возможно определить равновесную концентрацию анионов и кислоты. Прн постепенном изменении pH раствора соотношение между интенсивностями полос поглощения будет меняться. В пределе ири а =-- 1 в спектре останется только одна полоса, соответствующая поглощению аниона А. В другом предельном случае, когда при низком значении pH диссоциация кислоты будет практически подавлена и а = О, в спектре останется полоса, принадлежащая поглощению кислоты НЛ. [c.75]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]

    Построить спектр поглощения раствора и выбрать длину волны максимального поглощения. 6. Поместить все исходные растворы в ультратермостат с заданной для изучения скорости реакции температурой. 7. Смешать растворы как это было указано в пп. 2 и 3, примерно через 15—20 мин, когда температура растворов станет равной температуре воды в ультратермостате и быстро залить полученный раствор в -см кювету. Кювету установить в приспособление для термостатирования кювет. В присиособлении для термоста-тироваиия кювет поддерживается та же температура, что и в ультратермостате. 8. Измерить оптическую плотность ири длине волны максимального поглощения комплексным анионом. Измерения оптической плотности производить сначала через 0,5 мин, затем через 1—2 мин и далее через 2—4 мин. Измерения прекратить, ко да оптическая плотность станет меньше 0,1. 9. Определить порядок реакции, и константу скорости реакции на основании измеренных оптических плотностей раствора. 10. Повторить указанные измерения скорости реакции при температуре на 25—30"" выше предыдущей. [c.79]

    Он заключается в измерении с помощью спектрофотометра (СФ-4 или СФ-4а) светопоглощения топливом при указанной выше длине волны (в качестве эталона применяется изооктан) и вычислении содержания бици-клических ароматических углеводородов по среднему значению коэффициентов поглощения индивидуальных углеводородов. Измерение проводят в кварцевых кюветах, толщина слоя топлива 10 мм при ширине щели не более 0,3 мм. При оптической плотности топлива более 0,8 его разбавляют изооктаном до оптической плотности 0,2-0,8. На одно испьггание требуется около 50 мл топлива. [c.128]

    Еще в 1917 г. А.Эйнштейн выдвинул гипотезу о существовании не только спонтанных, но и вынужденных (стимулированных или индуцированных) переходов в атомах, сопровождающихся излучением. Попытка обнаружения стимулированного излучения в газовом разряде была предпринята Р.Ландебурном в 30-е годы, а в 1М0 г. В.А.Фабрикант сформулировал необходимые для этого условия. После второй мировой войны многие физики вернулись в лзбор атории, привнеся в работу опыт, полученный с радиолокационной техникой СВЧ. Одним из таких физиков, занявшихся СВЧ-спектроскопией, — как пишет Дж. Пирс [7], — был Чарльз Таунс. .. В 1951 г., сидя на парковой скамейке в Вашингтоне перед деловой встречей, Таунс впервые представил себе принцип, на котором сейчас базируется действие лазера . В 1954 г., почти одновременно, Н.Г. Басовым и А.М. Прохоровым в СССР (в Физическом институте им. П.Н. Лебедева) и Ч. Таунсом с сотрудниками в США (в Колумбийском университете) был создан первый молекулярный генератор на аммиаке, излучающий радиоволны с длиной волны около 1 см. Эта работа была отмечена Нобелевской премией. В 1960 г. Т. Мейман (фирма Хьюз , США) создал первый в мире рубиновый оптический квантовый генератор. Дальнейшее развитие квантовой электроники и нелинейной оптики — результат работы многих отечественных и зарубежных ученых [8]. [c.96]

    Для передачи лазерного излучения технологическому объекту и управления пучком служат специальные энергетические оптические системы [10]. С помощью фокусирующих, отражающих и преломляющих оптических элементов излучение лазера может быть подведено к заданным зонам обработки. Для изменения направления излучения с длиной волны, лежащей в видимой и ближней инфракрасной частях спектра, используют призмы полного внутреннего отражения и интер ференционные зеркала с многослойными диэлектрическими покрытиями. На длине волны 10,6 мкм применяют зеркала с покрытиями из золота и алюминия. Для перемещения луча в пространстве используют системы подвижных зеркал. В промышленных лазерах применяют фокусирующие системы телескопического и проекционного типов. [c.101]

    Фракщпо метанол — вода выпаривают досуха, переносят количественно в мерную колбу дистиллированной водой и доводят до метки. В делительную воронку емкостью 50 см наливают 10 см указанного раствора и метиленовый голубой. Смесь перемешивают 2 мин. Сливают нижний голубой слой хлороформа и определяют оптическую плотность на спектрофотометре при длине волны 660 нм. По калибровочной кривой находят концентрацию деэмульгатора в нефти. [c.164]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]

    Верхняя граница пропускания оптических стекол в ультрафиолетовой части спектра пригедена в следующей таблице. За границу пропускания принята Длина волны, при которой образец стекла толщиной 10 мм пропускает 50% излучения, [c.340]

    Величина угла вращения для данного вещества зависит от его концентрации в растворе, от толщины слоя раствора, от длины волны проходящего света, от температуры и от растворителя. Поэтому оптическую активность различных веществ можно сопостап-лять. если измерения углов вращения произведены для монохроматического света с опре деленной длиной волны (чаще всего для Л-линии натрия — длина волны 5893 А), при одинаковой температуре (обычно прп 20 С), в одном и том же оптически неактивнбм растворителе (или без растворителя), прн одинаковой концентрации раствора и прн одной и той же толщине его слоя. [c.895]


Смотреть страницы где упоминается термин Оптическая и длина волны: [c.28]    [c.28]    [c.479]    [c.37]    [c.50]    [c.73]    [c.356]    [c.461]    [c.99]    [c.181]    [c.25]    [c.459]    [c.340]    [c.16]    [c.53]   
Дисперсия оптического вращения и круговой дихроизм в органической химии (1970) -- [ c.10 , c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Длина волны



© 2025 chem21.info Реклама на сайте